基于辐照度历史数据的某太阳能发电厂短期临近云预报

R. Caballero, L. Zarzalejo, Á. Otero, L. Piñuel, S. Wilbert
{"title":"基于辐照度历史数据的某太阳能发电厂短期临近云预报","authors":"R. Caballero, L. Zarzalejo, Á. Otero, L. Piñuel, S. Wilbert","doi":"10.24215/16666038.18.E21","DOIUrl":null,"url":null,"abstract":"This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour.  Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.","PeriodicalId":188846,"journal":{"name":"J. Comput. Sci. Technol.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Short term cloud nowcasting for a solar power plant based on irradiance historical data\",\"authors\":\"R. Caballero, L. Zarzalejo, Á. Otero, L. Piñuel, S. Wilbert\",\"doi\":\"10.24215/16666038.18.E21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour.  Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.\",\"PeriodicalId\":188846,\"journal\":{\"name\":\"J. Comput. Sci. Technol.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24215/16666038.18.E21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24215/16666038.18.E21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了以高时空分辨率(5分钟)预报正常太阳辐照度的问题。该预测是基于西班牙阿尔梅里亚的一个运行中的太阳能计划的高分辨率辐射测量网络在一年内注册的数据集。特别地,我们展示了一种根据前一小时获得的辐照度值预测未来几分钟辐照度的技术。我们的建议采用了一种称为LSTM的递归神经网络,它可以学习复杂的模式,并且已经证明了它在预测时间序列方面的可用性。结果表明,与时间序列研究中常用的其他预测方法相比,该方法有了合理的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short term cloud nowcasting for a solar power plant based on irradiance historical data
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour.  Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信