Mucosal Immunology最新文献

筛选
英文 中文
TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma TL1A 引物可诱导多细胞因子 Th9 细胞表型,从而在小鼠哮喘模型中促进强过敏性炎症。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.006
{"title":"TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma","authors":"","doi":"10.1016/j.mucimm.2024.03.006","DOIUrl":"10.1016/j.mucimm.2024.03.006","url":null,"abstract":"<div><p>Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the <em>Il9</em> and <em>Il13</em> loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to <em>Il9</em> and <em>Il13</em> loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 537-553"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000254/pdfft?md5=213d4456140ec8261d3d9365e88b7886&pid=1-s2.0-S1933021924000254-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ETS translocation variant 5 (ETV5) promotes CD4+ T cell–mediated intestinal inflammation and fibrosis in inflammatory bowel diseases ETS 易位变异体 5(ETV5)可促进炎症性肠病中 CD4+ T 细胞介导的肠道炎症和纤维化。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.010
{"title":"ETS translocation variant 5 (ETV5) promotes CD4+ T cell–mediated intestinal inflammation and fibrosis in inflammatory bowel diseases","authors":"","doi":"10.1016/j.mucimm.2024.03.010","DOIUrl":"10.1016/j.mucimm.2024.03.010","url":null,"abstract":"<div><p>E26 transformation-specific translocation variant 5 (ETV5) has been implicated in the pathogenesis of inflammatory bowel diseases (IBD). However, the exact roles of ETV5 in regulating CD4<sup>+</sup> T cell–mediated intestinal inflammation and fibrosis formation remain unclear. Here, we reveal that ETV5 overexpression induced interleukin (IL)-9 and its transcription factor IRF4 expression in IBD CD4<sup>+</sup> T cells under T helper type 9 (Th9) cells–polarizing conditions. The silencing of IRF4 inhibited ETV5-induced IL-9 expression. CD4<sup>+</sup> T cell–specific ETV5 deletion ameliorated intestinal inflammation and fibrosis in trinitrobenzene sulfonic acid (TNBS)–induced experimental colitis and CD4<sup>+</sup> T cell–transferred recombination-activating gene-1 knockout (Rag1<sup>−/−</sup>) colitis mice, characterized by less CD4<sup>+</sup> T cell infiltration and lower fibroblast activation and collagen deposition in the colonic tissues. Furthermore, IL-9 treatment aggressive TNBS–induced intestinal fibrosis in CD4<sup>+</sup> T cell–specific ETV5 deletion and wild-type control mice. <em>In vitro</em>, human intestinal fibroblasts cocultured with ETV5 overexpressed-Th9 cells expressed higher levels of collagen I and III, whereas an inclusion of anti-IL-9 antibody could reverse this effect. Ribonucleic acid sequencing analysis demonstrated that IL-9 upregulated TAF1 expression in human intestinal fibroblasts. Clinical data showed that number of α-smooth muscle actin<sup>+</sup>TAF1<sup>+</sup> fibroblasts are higher in inflamed mucosa of patients with IBD. Importantly, TAF1 small interfering ribonucleic acid treatment suppressed IL-9–mediated profibrotic effect <em>in vitro</em>. These findings reveal that CD4<sup>+</sup> T cell–derived ETV5 promotes intestinal inflammation and fibrosis through upregulating IL-9–mediated intestinal inflammatory and fibrotic response in IBD. Thus, the ETV5/IL-9 signal pathway in T cells might represent a novel therapeutic target for intestinal inflammation and fibrosis in IBD.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 584-598"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000308/pdfft?md5=fee9b986ce3d09219e662f20c28dd077&pid=1-s2.0-S1933021924000308-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling 甲酰肽受体 1 通过抑制 CREB-C/EBPβ-S100a8 信号传导减轻结肠炎症并维持粘膜稳态。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.04.001
{"title":"Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling","authors":"","doi":"10.1016/j.mucimm.2024.04.001","DOIUrl":"10.1016/j.mucimm.2024.04.001","url":null,"abstract":"<div><p>Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein β, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 651-672"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000382/pdfft?md5=f3362024fc9b37f17305d0fe3a33ab74&pid=1-s2.0-S1933021924000382-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140777323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ileal mucus viscoelastic properties differ in Crohn’s disease 克罗恩病的回肠粘液粘弹性不同。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.05.002
{"title":"Ileal mucus viscoelastic properties differ in Crohn’s disease","authors":"","doi":"10.1016/j.mucimm.2024.05.002","DOIUrl":"10.1016/j.mucimm.2024.05.002","url":null,"abstract":"<div><p>Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the gastrointestinal tract, frequently involving the terminal ileum. While colonic mucus alterations in CD patients have been described, terminal ileal mucus and its mechanobiological properties have been neglected. Our study is the first of its kind to decipher the viscoelastic and network properties of ileal mucus. With that aim, oscillatory rheological shear measurements based on an airway mucus protocol that was thoroughly validated for ileal mucus were performed. Our pilot study analyzed terminal ileum mucus from controls (<em>n</em> = 14) and CD patients (<em>n</em> = 14). Mucus network structure was visualized by scanning electron microscopy. Interestingly, a statistically significant increase in viscoelasticity as well as a decrease in mesh size was observed in ileal mucus from CD patients compared to controls. Furthermore, rheological data were analyzed in relation to study participants’ clinical characteristics, revealing a noteworthy trend between non-smokers and smokers. In conclusion, this study provides the first data on the viscoelastic properties and structure of human ileal mucus in the healthy state and Crohn’s disease, demonstrating significant alterations between groups and highlighting the need for further research on mucus and its effect on the underlying epithelial barrier.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 713-722"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000436/pdfft?md5=7552f17e4ce0fd8bc0360d25697985fe&pid=1-s2.0-S1933021924000436-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection 在炎症或感染部位,LECs 通过 IL-17RC/CMTM4/NF-κB 轴调节中性粒细胞的清除。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.05.003
{"title":"LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection","authors":"","doi":"10.1016/j.mucimm.2024.05.003","DOIUrl":"10.1016/j.mucimm.2024.05.003","url":null,"abstract":"<div><p>The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, <em>Staphylococcus aureus</em>-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, <em>in vitro</em> stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreER<sup>T2</sup> mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 723-738"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000448/pdfft?md5=4852460cedca06f516f12ffd936c9ef8&pid=1-s2.0-S1933021924000448-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140958361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interferon regulatory factor 6 (IRF6) determines intestinal epithelial cell development and immunity 干扰素调节因子 6(IRF6)决定肠上皮细胞的发育和免疫功能
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.013
{"title":"Interferon regulatory factor 6 (IRF6) determines intestinal epithelial cell development and immunity","authors":"","doi":"10.1016/j.mucimm.2024.03.013","DOIUrl":"10.1016/j.mucimm.2024.03.013","url":null,"abstract":"<div><p>Intestinal epithelial cell (IEC) responses to interferon (IFN) favor antiviral defense with minimal cytotoxicity, but IEC-specific factors that regulate these responses remain poorly understood. Interferon regulatory factors (IRFs) are a family of nine related transcription factors, and IRF6 is preferentially expressed by epithelial cells, but its roles in IEC immunity are unknown. In this study, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screens found that <em>Irf6</em> deficiency enhanced IFN-stimulated antiviral responses in transformed mouse IECs but not macrophages. Furthermore, knockout (KO) of <em>Irf6</em> in IEC organoids resulted in profound changes to homeostasis and immunity gene expression. <em>Irf6</em> KO organoids grew more slowly, and single-cell ribonucleic acid sequencing indicated reduced expression of genes in epithelial differentiation and immunity pathways. IFN-stimulated gene expression was also significantly different in <em>Irf6</em> KO organoids, with increased expression of stress and apoptosis-associated genes. Functionally, the transcriptional changes in <em>Irf6</em> KO organoids were associated with increased cytotoxicity upon IFN treatment or inflammasome activation. These data indicate a previously unappreciated role for IRF6 in IEC biology, including regulation of epithelial development and moderation of innate immune responses to minimize cytotoxicity and maintain barrier function.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 633-650"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000321/pdfft?md5=c0535a80131eae17cddeb5a5feabac6a&pid=1-s2.0-S1933021924000321-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance SARS-CoV-2 Spike 蛋白从粘膜屏障到最内层引发肠道损伤:从基础科学到临床意义
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.009
{"title":"SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to innermost layers: From basic science to clinical relevance","authors":"","doi":"10.1016/j.mucimm.2024.03.009","DOIUrl":"10.1016/j.mucimm.2024.03.009","url":null,"abstract":"<div><p>Studies have reported the occurrence of gastrointestinal (GI) symptoms, primarily diarrhea, in COVID-19. However, the pathobiology regarding COVID-19 in the GI tract remains limited. This work aimed to evaluate SARS-CoV-2 Spike protein interaction with gut lumen in different experimental approaches. Here, we present a novel experimental model with the inoculation of viral protein in the murine jejunal lumen, <em>in vitro</em> approach with human enterocytes, and molecular docking analysis. Spike protein led to increased intestinal fluid accompanied by Cl<sup>−</sup> secretion, followed by intestinal edema, leukocyte infiltration, reduced glutathione levels, and increased cytokine levels [interleukin (IL)-6, tumor necrosis factor-α, IL-1β, IL-10], indicating inflammation. Additionally, the viral epitope caused disruption in the mucosal histoarchitecture with impairment in Paneth and goblet cells, including decreased lysozyme and mucin, respectively. Upregulation of toll-like receptor 2 and toll-like receptor 4 gene expression suggested potential activation of local innate immunity. Moreover, this experimental model exhibited reduced contractile responses in jejunal smooth muscle. In barrier function, there was a decrease in transepithelial electrical resistance and alterations in the expression of tight junction proteins in the murine jejunal epithelium. Additionally, paracellular intestinal permeability increased in human enterocytes. Finally, in silico data revealed that the Spike protein interacts with cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride conductance (CaCC), inferring its role in the secretory effect. Taken together, all the events observed point to gut impairment, affecting the mucosal barrier to the innermost layers, establishing a successful experimental model for studying COVID-19 in the GI context.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 565-583"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000291/pdfft?md5=3b61945ffeb24251b400c856a1bf1d5b&pid=1-s2.0-S1933021924000291-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140330023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The atypical IκB family member Bcl3 determines differentiation and fate of intestinal RORγt+ regulatory T-cell subsets 非典型 IκB 家族成员 Bcl3 决定着肠道 RORγt+ 调节性 T 细胞亚群的分化和命运。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.04.002
{"title":"The atypical IκB family member Bcl3 determines differentiation and fate of intestinal RORγt+ regulatory T-cell subsets","authors":"","doi":"10.1016/j.mucimm.2024.04.002","DOIUrl":"10.1016/j.mucimm.2024.04.002","url":null,"abstract":"<div><p>Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear. Here, we provide direct evidence that B-cell lymphoma 3 (Bcl3) limits the development of pTregs in a T cell-intrinsic manner. Moreover, the absence of Bcl3 allowed for the formation of an unusual intestinal Treg population co-expressing the transcription factors Helios and RORγt. The expanded RORγt<sup>+</sup> Treg populations in the absence of Bcl3 displayed an activated phenotype and secreted high levels of the anti-inflammatory cytokines interleukin (IL)-10 and transforming growth factor beta. They were fully capable of suppressing effector T cells in a transfer colitis model despite an intrinsic bias to trans-differentiate toward T helper 17-like cells. Finally, we provide a Bcl3-dependent gene signature in pTregs including altered responsiveness to the cytokines IL-2, IL-6, and tumor necrosis factor alpha. Our results demonstrate that Bcl3 acts as a molecular switch to limit the expansion of different intestinal Treg subsets and may thus serve as a novel therapeutic target for inflammatory bowel disease by restoring intestinal immune tolerance.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 673-691"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000394/pdfft?md5=393453ac16b69c21623f6d461d94b867&pid=1-s2.0-S1933021924000394-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140762834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migratory CD103+CD11b+ cDC2s in Peyer’s patches are critical for gut IgA responses following oral immunization 佩尔斑块中的迁移性 CD103+CD11b+ cDC2 细胞对口服免疫后的肠道 IgA 反应至关重要。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.004
{"title":"Migratory CD103+CD11b+ cDC2s in Peyer’s patches are critical for gut IgA responses following oral immunization","authors":"","doi":"10.1016/j.mucimm.2024.03.004","DOIUrl":"10.1016/j.mucimm.2024.03.004","url":null,"abstract":"<div><p>Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer’s patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103<sup>−</sup> conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103<sup>+</sup> cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103<sup>+</sup> cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient <em>Batf3</em><sup>−/−</sup> mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT’s oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103<sup>+</sup> cDC2s.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 509-523"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000230/pdfft?md5=42319928de33273b0707e29512332b31&pid=1-s2.0-S1933021924000230-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IL-5 antagonism reverses priming and activation of eosinophils in severe eosinophilic asthma IL-5 拮抗剂可逆转严重嗜酸性粒细胞性哮喘中嗜酸性粒细胞的引诱和激活。
IF 7.9 2区 医学
Mucosal Immunology Pub Date : 2024-08-01 DOI: 10.1016/j.mucimm.2024.03.005
{"title":"IL-5 antagonism reverses priming and activation of eosinophils in severe eosinophilic asthma","authors":"","doi":"10.1016/j.mucimm.2024.03.005","DOIUrl":"10.1016/j.mucimm.2024.03.005","url":null,"abstract":"<div><p>Eosinophils are key effector cells mediating airway inflammation and exacerbation in patients with severe eosinophilic asthma. They are present in increased numbers and activation states in the airway mucosa and lumen. Interleukin-5 (IL-5) is the key eosinophil growth factor that is thought to play a role in eosinophil priming and activation. However, the mechanism of these effects is still not fully understood. The anti-IL-5 antibody mepolizumab reduces eosinophil counts in the airway modestly but has a large beneficial effect on the frequency of exacerbations of severe eosinophilic asthma, suggesting that reduction in eosinophil priming and activation is of central mechanistic importance. In this study, we used the therapeutic effect of mepolizumab and single-cell ribonucleic acid sequencing to investigate the mechanism of eosinophil priming and activation by IL-5. We demonstrated that IL-5 is a dominant driver of eosinophil priming and plays multifaceted roles in eosinophil function. It enhances eosinophil responses to other stimulators of migration, survival, and activation by activating phosphatidylinositol-3-kinases, extracellular signal-regulated kinases, and p38 mitogen-activated protein kinases signaling pathways. It also enhances the pro-fibrotic roles of eosinophils in airway remodeling via transforming growth factor-β pathway. These findings provide a mechanistic understanding of eosinophil priming in severe eosinophilic asthma and the therapeutic effect of anti-IL-5 approaches in the disease.</p></div>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":"17 4","pages":"Pages 524-536"},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1933021924000242/pdfft?md5=c3cb4d4c96ef77859fa4efa2e7e63cdf&pid=1-s2.0-S1933021924000242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信