Yayan Wang, Tian Gao, Lijun Shan, Kun Li, Fei Liang, Jianmin Yu, Ya Ni, Peibei Sun
{"title":"Iberiotoxin and clofilium regulate hyperactivation, acrosome reaction, and ion homeostasis synergistically during human sperm capacitation","authors":"Yayan Wang, Tian Gao, Lijun Shan, Kun Li, Fei Liang, Jianmin Yu, Ya Ni, Peibei Sun","doi":"10.1002/mrd.23671","DOIUrl":"10.1002/mrd.23671","url":null,"abstract":"<p>Potassium channels play essential roles in the regulation of male fertility. However, potassium channels mediating K<sup>+</sup> currents in human sperm (I<sub>KSper</sub>) remain controversial. Besides SLO3, the SLO1 potassium channel is a potential candidate for human sperm KSper. This study intends to elucidate the function of SLO1 potassium channel during human sperm capacitation. Human sperm were treated with iberiotoxin (IbTX, a SLO1 specific inhibitor) and clofilium (SLO3 inhibitor) separately or simultaneously during in vitro capacitation. A computer-assisted sperm analyzer was used to assess sperm motility. The sperm acrosome reaction (AR) was analyzed using fluorescein isothiocyanate-conjugated <i>Pisum sativum</i> agglutinin staining. Sperm protein tyrosine phosphorylation was studied using western blotting. Intracellular Ca<sup>2+</sup>, K<sup>+</sup>, Cl<sup>−</sup>, and pH were analyzed using ion fluorescence probes. Independent inhibition with IbTX or clofilium decreased the sperm hyperactivation, AR, and protein tyrosine phosphorylation, and was accompanied by an increase in [K<sup>+</sup>]<sub>i</sub>, [Cl<sup>−</sup>]<sub>i</sub>, and pH<sub>i</sub>, but a decrease in [Ca<sup>2+</sup>]<sub>i</sub>. Simultaneously inhibition with IbTX and clofilium lower sperm hyperactivation and AR more than independent inhibition. The increase in [K<sup>+</sup>]<sub>i</sub>, [Cl<sup>−</sup>]<sub>i</sub>, and pH<sub>i</sub>, and the decrease in [Ca<sup>2+</sup>]<sub>i</sub> were more pronounced. This study suggested that the SLO1 potassium channel may have synergic roles with SLO3 during human sperm capacitation.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 3","pages":"129-140"},"PeriodicalIF":2.5,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9313704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Estefanía González-Alvarez, Crystal M. Roach, Aileen F. Keating
{"title":"Scrambled eggs—Negative impacts of heat stress and chemical exposures on ovarian function in swine","authors":"M. Estefanía González-Alvarez, Crystal M. Roach, Aileen F. Keating","doi":"10.1002/mrd.23669","DOIUrl":"10.1002/mrd.23669","url":null,"abstract":"<div>\u0000 \u0000 <p>Exposure to environmental toxicants and hyperthermia can hamper reproduction in female mammals including swine. Phenotypic manifestations include poor quality oocytes, endocrine disruption, infertility, lengthened time to conceive, pregnancy loss, and embryonic defects. The ovary has the capacity for toxicant biotransformation, regulated in part by the phosphatidylinositol-3 kinase signaling pathway. The impacts of exposure to mycotoxins and pesticides on swine reproduction and the potential for an emerging chemical class of concern, the per- and polyfluoroalkylated substances, to hamper porcine reproduction are reviewed. The negative impairments of heat stress (HS) on swine reproductive outcomes are also described and the cumulative effect of environmental exposures, such as HS, when present in conjunction with a toxicant is considered.</p></div>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 7","pages":"503-516"},"PeriodicalIF":2.5,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23669","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria M. Guzewska, Joanna Szuszkiewicz, Monika M. Kaczmarek
{"title":"Extracellular vesicles: Focus on peri-implantation period of pregnancy in pigs","authors":"Maria M. Guzewska, Joanna Szuszkiewicz, Monika M. Kaczmarek","doi":"10.1002/mrd.23664","DOIUrl":"10.1002/mrd.23664","url":null,"abstract":"<p>The establishment of cell-to-cell communication between the endometrium and the developing embryo is the most important step in successful mammalian pregnancy. Close interaction between the uterine luminal epithelium and trophoblast cells requires triggering timely molecular dialog for successful maternal recognition of pregnancy, embryo implantation, and placenta development. Quite recently, extracellular vesicles (EVs) carrying unique molecular cargo emerged as evolutionarily conserved mediators of cell-to-cell communication during early pregnancy. To date, the presence of EVs at the embryo–maternal interface has been demonstrated in numerous mammals, including domestic livestock, such as pigs. However, few studies have focused on revealing the mechanism of EV-mediated crosstalk between developing early embryos and receptive endometrium. Over the past years, it has appeared that understanding the role of EVs in mammalian reproduction can substantially improve our understanding of the biological challenges of successful reproductive performance. This review describes current knowledge of EVs, specifically in relation to the peri-implantation period in pigs, characterized by common features of embryo implantation and high embryonic mortality in mammals.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 7","pages":"634-645"},"PeriodicalIF":2.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10528676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deterioration of mitochondrial biogenesis and degradation in the endometrium is a cause of subfertility in cows","authors":"Shuichi Matsuyama, Sho Nakamura, Shiori Minabe, Miki Sakatani, Naoki Takenouchi, Takuya Sasaki, Yuki Inoue, Hisataka Iwata, Koji Kimura","doi":"10.1002/mrd.23670","DOIUrl":"10.1002/mrd.23670","url":null,"abstract":"<p>To investigate possible causes of reproductive failure, we conducted global endometrial gene expression analyses in fertile and subfertile cows. Ingenuity pathway analysis showed that RICTOR and SIRT3 are significant upstream regulators for highly expressed genes in fertile cows, and are predicted to be activated upstream regulators of normal mitochondrial respiration. Canonical pathway analysis revealed that these highly expressed genes are involved in the activation of mitochondrial oxidative phosphorylation. Therefore, in subfertile cows, the inactivation of RICTOR and SIRT3 may correlate with decreased capacity of mitochondrial respiration. Furthermore, the expression levels of most mitochondrial DNA genes and nuclear genes encoding mitochondrial proteins were higher in subfertile cows. The mitochondrial DNA copy number was significantly higher in the endometrium of subfertile cows, whereas the ATP content did not differ between fertile and subfertile cows. Quantitative reverse transcription-PCR analysis demonstrated that the expression of <i>PGC1a, TFAM, MFN1, FIS1</i>, and <i>BCL2L13</i> were significantly lower in subfertile cows. In addition, transmission electron microscopy images showed mitochondrial swelling in the endometrial cells of the subfertile cow. These results suggest that poor-quality mitochondria accumulate in the endometrium owing to a reduced capacity for mitochondrial biogenesis, fusion, fission, and degradation in subfertile cows, and may contribute to infertility.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 3","pages":"141-152"},"PeriodicalIF":2.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9313698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One Health challenges for pig reproduction","authors":"Olli Peltoniemi, Topi Tanskanen, Maria Kareskoski","doi":"10.1002/mrd.23666","DOIUrl":"10.1002/mrd.23666","url":null,"abstract":"<p>The current state of the world challenges pig reproduction as an important part of One Health, which involves interrelationships between animal, human and environmental health. The One Health concept underlines a comparative aspect in reproductive physiology and disease occurrence, bridging knowledge from one species to another. Seasonal changes in the environment affect pig reproduction and climate change may further strengthen those effects. Endocrine-disrupting chemicals (EDCs), and specifically phthalates and heavy metals, interfere with endocrine function, and thereby sexual behavior, fertilization capacity and steroidogenesis. Reproductive infections and extended semen storage are important indications for antimicrobial use. Innovative solutions are needed to explore alternatives to antimicrobials. Efforts to ensure reproductive efficiency have prolonged farrowing as litter size has doubled over the past three decades, compromising immune transfer and welfare. Physiological, metabolic and programming related events around parturition are key areas for future One Health research in pig reproduction. In conclusion, climate change challenges reproductive management and breeding. More resilient pigs that can tolerate harsh environment but maintain high reproductive performance are needed. EDCs continue to grow as an environmental challenge for reproductive management and alternatives to antibiotics will be required.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 7","pages":"420-435"},"PeriodicalIF":2.5,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10174971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Circular RNA SESN2 aggravates gestational trophoblast cell damage induced by high glucose by binding to IGF2BP2","authors":"Xin Huang, Linlin Guo","doi":"10.1002/mrd.23667","DOIUrl":"10.1002/mrd.23667","url":null,"abstract":"<p>Gestational diabetes mellitus (GDM) is a common disease in pregnant women that threatens maternal and fetal health. Circular RNAs (circRNAs) have been considered potential diagnostic markers for GDM and affect trophoblast cell phenotypes. This study aimed to explore the effect of circSESN2 on high glucose (HG)-treated trophoblast cells. Peripheral blood and placental tissues were taken from patients with GDM, in which circSESN2 and IGF2BP2 levels were detected by quantitative reverse transcription polymerase chain reaction and/or western blot. HTR-8/SVneo cells were treated with 25 mM glucose and transduced with circSESN2 or IGF2BP2 knockdown vectors. HTR-8/SVneo cell viability was evaluated by MTT assay, cell migration by scratch test, and cell invasion by transwell assay, IL-1β, IL-6, TNF-α, malondialdehyde, and superoxide dismutase levels by ELISA or kits, and reactive oxygen species levels by DCFH-DA probes. The binding between circSESN2 and IGF2BP2 was verified by RNA pulldown and RIP assays. CircSESN2 and IGF2BP2 were overexpressed in GDM patients. Suppressing circSESN2 or IGF2BP2 increased HTR-8/SVneo cell invasion and migration, decreased cell apoptosis, and reduced pro-inflammatory cytokine release and oxidative stress injury. CircSESN2 bound IGF2BP2 and IGF2BP2 overexpression accelerated HG-induced HTR-8/SVneo cell damage despite circSESN2 knockdown. Collectively, circSESN2 exacerbated HG-induced trophoblast cell damage by binding IGF2BP2 and upregulating its protein expression.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 2","pages":"73-86"},"PeriodicalIF":2.5,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9077202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive analysis of nonsurrounded nucleolus and surrounded nucleolus oocytes on chromatin accessibility using ATAC-seq","authors":"Xiaofan Sun, Dayu Wang, Weijian Li, Qian Gao, Jingli Tao, Honglin Liu","doi":"10.1002/mrd.23668","DOIUrl":"10.1002/mrd.23668","url":null,"abstract":"<p>Mouse germinal vesicle (GV) oocytes are divided into surrounded nucleolus (SN) and nonsurrounded nucleolus (NSN) oocytes based on chromatin morphology. NSN oocytes spontaneously transform into SN oocytes after accumulating enough maternal transcripts. SN oocytes show transcriptional silencing. When oocyte maturation is abnormal or takes place in vitro, NSN oocytes do not go through SN stage before proceeding to MII. Nontransitive oocytes show developmental retardation, a low fertilization rate, and arrest at the two-cell embryo stage in mice. Here, chromatin-binding ribonucleic acid polymerase II (RNAP II) activity, newly synthesized RNA, and chromatin accessibility in GV oocytes were examined. In SN oocytes, RNAP II did not bind to DNA, neo-RNA was not generated in nuclei, and the phosphorylation state of RNAP II did not affect the chromatin-binding activity. The number of accessible genes in SN oocytes was remarkably lower than that in NSN oocytes. The accessibility of different functional genes was also different between the two types of oocytes. Thus, low chromatin accessibility leads to transcriptional silencing in SN oocytes.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 2","pages":"87-97"},"PeriodicalIF":2.5,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9387035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Zhang, Hailing Zhang, Shanshan Gao, Caiping Sun, Bing Wang
{"title":"Effect and mechanism of microRNA-515-5p in proliferation and apoptosis of trophoblast cells in preeclampsia via manipulating histone deacetylase 2","authors":"Ke Zhang, Hailing Zhang, Shanshan Gao, Caiping Sun, Bing Wang","doi":"10.1002/mrd.23649","DOIUrl":"10.1002/mrd.23649","url":null,"abstract":"<p>Preeclampsia (PE) refers to a pregnancy-specific disease that begins with the placenta. Differentially expressed microRNAs (miRs) are a feature of PE. This study tried to elicit the functional mechanism of miR-515-5p in trophoblast cell behaviors in PE. First, HTR-8/SVneo cells were transfected with miR-515-5p mimic or miR-515-5p inhibitor. Then, relative expression levels of miR-515-5p and histone deacetylase 2 (HDAC2) in HTR-8/SVneo cells were determined by reverse transcription-quantitative polymerase chain reaction. The potential binding site of miR-515-5p and HDAC2 was predicted on Targetscan and their binding relationship was verified via dual-luciferase assay. Proliferation, apoptosis, invasion, and migration of HTR-8/SVneo cells were assessed via cell counting kit-8, flow cytometry, Transwell, and wound healing assays, respectively. Protein levels of Cleaved caspase-3, Bcl-2, and Bax were determined via Western blot. Overexpressed miR-515-5p impeded proliferation and stimulated apoptosis of HTR-8/SVneo cells, and decreased levels of Cleaved caspase-3 and Bax and elevated Bcl-2, whilst opposite results were observed after miR-515-5p inhibition. miR-515-5p targeted HDAC2. Knockdown of HDAC2 annulled the promotional action of miR-515-5p inhibition on proliferative, invasive, and migratory abilities and its antiapoptotic action on HTR-8/SVneo cells. In brief, miR-515-5p affected the proliferation, apoptosis, invasion, and migration of HTR-8/SVneo cells by targeting HDAC2.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 1","pages":"59-66"},"PeriodicalIF":2.5,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10710977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Table of Contents, Volume 89, Issue 12, December 2022","authors":"","doi":"10.1002/mrd.23514","DOIUrl":"10.1002/mrd.23514","url":null,"abstract":"","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"89 12","pages":"563"},"PeriodicalIF":2.5,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.23514","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41274286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela P. A. F. Braga, Amanda S. Setti, Assumpto Iaconelli Jr., Edson Borges Jr.
{"title":"Previous infection with SARS-CoV-2 impacts embryo morphokinetics but not clinical outcomes in a time-lapse imaging system","authors":"Daniela P. A. F. Braga, Amanda S. Setti, Assumpto Iaconelli Jr., Edson Borges Jr.","doi":"10.1002/mrd.23658","DOIUrl":"10.1002/mrd.23658","url":null,"abstract":"<p>The goal for the present study was to investigate whether previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may compromise embryo morphokinetics and implantation. For that, a historical cohort study was performed in a private university-affiliated in vitro fertilization center. The study included 1628 embryos from 88 patients undergoing intracytoplasmic sperm injection (ICSI) cycles. Patients were age-matched in a 1:3 ratio to either a coronavirus disease (COVID) group, including patients with a positive SARS-CoV-2 immunoglobulin test (<i>n</i> = 22 patients, 386 embryos), or a control group, including patients with a negative SARS-CoV-2 immunoglobulin test (<i>n</i> = 66, 1242 embryos). The effect of previous infection with SARS-CoV-2 on morphokinetic events and ICSI outcomes was evaluated. Embryos derived from patients in the COVID group presented longer time to pronuclei appearance and fading, time to form two, three, four and five cells, and time to blastulation. The durations of the third cell cycle and to time to complete synchronous divisions were also significantly increased in the COVID group compared with the control group, whereas known implantation diagnosis score Day 5 ranked significantly lower in the COVID group. No differences were observed between the COVID and control groups on clinical outcomes. In conclusion, patients planning parenthood, who have recovered from COVID-19 infection, must be aware of a possible effect of the infection on embryo development potential.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"90 1","pages":"53-58"},"PeriodicalIF":2.5,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880701/pdf/MRD-90-53.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10713711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}