Molecular InformaticsPub Date : 2024-01-01Epub Date: 2023-12-12DOI: 10.1002/minf.202300221
Maria Martinez-Sevillano, Maria J Falaguera, Jordi Mestres
{"title":"CIPSI: An open chemical intellectual property service for medicinal chemists.","authors":"Maria Martinez-Sevillano, Maria J Falaguera, Jordi Mestres","doi":"10.1002/minf.202300221","DOIUrl":"10.1002/minf.202300221","url":null,"abstract":"<p><p>The availability of patent chemical data offers public access to a chemical space that is not well covered by other sources collecting small molecules from scholarly literature. However, open applications to facilitate the search and analysis of biologically-relevant molecular structures present in patents are still largely missing. We have developed CIPSI, an open Chemical Intellectual Property Service @ IMIM to assist medicinal chemists in searching and analysing molecules in SureChEMBL patents. The current version contains 6,240,500 molecules from 236,689 pharmacological patents, of which 5,949,214 are confidently assigned to core chemical structures reminiscent of the Markush structure in the patent claim. The platform includes some graphical tools to facilitate comparative patent analyses between drugs, chemical substructures, and company assignees. CIPSI is available at https://cipsi.org.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300221"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138445491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2024-01-01Epub Date: 2023-11-20DOI: 10.1002/minf.202300190
Joao Aires-de-Sousa
{"title":"GUIDEMOL: A Python graphical user interface for molecular descriptors based on RDKit.","authors":"Joao Aires-de-Sousa","doi":"10.1002/minf.202300190","DOIUrl":"10.1002/minf.202300190","url":null,"abstract":"<p><p>GUIDEMOL is a Python computer program based on the RDKit software to process molecular structures and calculate molecular descriptors with a graphical user interface using the tkinter package. It can calculate descriptors already implemented in RDKit as well as grid representations of 3D molecular structures using the electrostatic potential or voxels. The GUIDEMOL app provides easy access to RDKit tools for chemoinformatics users with no programming skills and can be adapted to calculate other descriptors or to trigger other procedures. A command line interface (CLI) is also provided for the calculation of grid representations. The source code is available at https://github.com/jairesdesousa/guidemol.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300190"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54230132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2024-01-01Epub Date: 2023-12-19DOI: 10.1002/minf.202300207
Konstantin I Popov, James Wellnitz, Travis Maxfield, Alexander Tropsha
{"title":"HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.","authors":"Konstantin I Popov, James Wellnitz, Travis Maxfield, Alexander Tropsha","doi":"10.1002/minf.202300207","DOIUrl":"10.1002/minf.202300207","url":null,"abstract":"<p><p>Recent rapid expansion of make-on-demand, purchasable, chemical libraries comprising dozens of billions or even trillions of molecules has challenged the efficient application of traditional structure-based virtual screening methods that rely on molecular docking. We present a novel computational methodology termed HIDDEN GEM (HIt Discovery using Docking ENriched by GEnerative Modeling) that greatly accelerates virtual screening. This workflow uniquely integrates machine learning, generative chemistry, massive chemical similarity searching and molecular docking of small, selected libraries in the beginning and the end of the workflow. For each target, HIDDEN GEM nominates a small number of top-scoring virtual hits prioritized from ultra-large chemical libraries. We have benchmarked HIDDEN GEM by conducting virtual screening campaigns for 16 diverse protein targets using Enamine REAL Space library comprising 37 billion molecules. We show that HIDDEN GEM yields the highest enrichment factors as compared to state of the art accelerated virtual screening methods, while requiring the least computational resources. HIDDEN GEM can be executed with any docking software and employed by users with limited computational resources.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300207"},"PeriodicalIF":3.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41139125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting of essential mycobacterial replication enzyme DnaG primase revealed Mitoxantrone and Vapreotide as novel mycobacterial growth inhibitors.","authors":"Sonam Grover, Waseem Ali, Salma Jamal, Rishabh Gangwar, Faraz Ahmed, Rahul Sharma, Meetu Agarwal, Javaid Ahmad Sheikh, Abhinav Grover","doi":"10.1002/minf.202300284","DOIUrl":"https://doi.org/10.1002/minf.202300284","url":null,"abstract":"Tuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies. New therapeutics with novel mechanisms of action are urgently required to address the current global TB crisis. The essential mycobacterial primase DnaG with no structural homology to homo sapiens presents itself as a good candidate for drug targeting. In the present study, Mitoxantrone and Vapreotide, two FDA-approved drugs, were identified as potential anti-mycobacterial agents. Both Mitoxantrone and Vapreotide exhibit a strong Minimum Inhibitory Concentration (MIC) of ≤25µg/ml against both the virulent (M.tb-H37Rv) and avirulent (M.tb-H37Ra) strains of M.tb. Extending the validations further revealed the inhibitory potential drugs in ex-vivo conditions. Leveraging the computational high-throughput multi-level docking procedures from the pool of ~2700 FDA-approved compounds, Mitoxantrone and Vapreotide were screened out as potential inhibitors of DnaG. Extensive 200ns long all-atoms molecular dynamic simulation of DnaGDrugs complexes revealed that both drugs bind strongly and stabilize the DnaG during simulations. Reduced solvent exposure and confined motions of the active centre of DnaG upon complexation with drugs indicated that both drugs led to the closure of the active site of DnaG. From this study's findings, we propose Mitoxantrone and Vapreotide as potential anti-mycobacterial agents, with their novel mechanism of action against mycobacterial DnaG.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"55 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138825802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaime Pérez-Villanueva, Karen Rodríguez-Villar, Francisco Cortés-Benítez, Juan Francisco Palacios-Espinosa
{"title":"Similarity searching for anticandidal agents employing a repurposing approach","authors":"Jaime Pérez-Villanueva, Karen Rodríguez-Villar, Francisco Cortés-Benítez, Juan Francisco Palacios-Espinosa","doi":"10.1002/minf.202300206","DOIUrl":"https://doi.org/10.1002/minf.202300206","url":null,"abstract":"Fungal infections caused by <i>Candida</i> are still a public health concern. Particularly, the resistance to traditional chemotherapeutic agents is a major issue that requires efforts to develop new therapies. One of the most interesting approaches to finding new active compounds is drug repurposing aided by computational methods. In this work, two databases containing anticandidal agents and drugs were studied employing cheminformatics and compared by similarity methods. The results showed 36 drugs with high similarities to some candicidals. From these drugs, trimetozin, osalmid and metochalcone were evaluated against <i>C. albicans</i> (18804), <i>C. glabrata</i> (90030), and miconazole-resistant strain <i>C. glabrata</i> (32554). Osalmid and metochalcone were the best, with activity in the micromolar range. These findings represent an opportunity to continue with the research on the potential antifungal application of osalmid and metochalcone as well as the design of structurally related derivatives.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"5 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2023-12-01Epub Date: 2023-11-09DOI: 10.1002/minf.202300143
Hua Feng, Fangyu Wang, Ning Li, Qian Xu, Guanming Zheng, Xuefeng Sun, Man Hu, Xuewu Li, Guangxu Xing, Gaiping Zhang
{"title":"Use of tree-based machine learning methods to screen affinitive peptides based on docking data.","authors":"Hua Feng, Fangyu Wang, Ning Li, Qian Xu, Guanming Zheng, Xuefeng Sun, Man Hu, Xuewu Li, Guangxu Xing, Gaiping Zhang","doi":"10.1002/minf.202300143","DOIUrl":"10.1002/minf.202300143","url":null,"abstract":"<p><p>Screening peptides with good affinity is an important step in peptide-drug discovery. Recent advancement in computer and data science have made machine learning a useful tool in accurately affinitive-peptide screening. In current study, four different tree-based algorithms, including Classification and regression trees (CART), C5.0 decision tree (C50), Bagged CART (BAG) and Random Forest (RF), were employed to explore the relationship between experimental peptide affinities and virtual docking data, and the performance of each model was also compared in parallel. All four algorithms showed better performances on dataset pre-scaled, -centered and -PCA than other pre-processed dataset. After model re-built and hyperparameter optimization, the optimal C50 model (C50O) showed the best performances in terms of Accuracy, Kappa, Sensitivity, Specificity, F1, MCC and AUC when validated on test data and an unknown PEDV datasets evaluation (Accuracy=80.4 %). BAG and RFO (the optimal RF), as two best models during training process, did not performed as expecting during in testing and unknown dataset validations. Furthermore, the high correlation of the predictions of RFO and BAG to C50O implied the high stability and robustness of their prediction. Whereas although the good performance on unknown dataset, the poor performance in test data validation and correlation analysis indicated CARTO could not be used for future data prediction. To accurately evaluate the peptide affinity, the current study firstly gave a tree-model competition on affinitive peptide prediction by using virtual docking data, which would expand the application of machine learning algorithms in studying PepPIs and benefit the development of peptide therapeutics.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300143"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10212086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2023-12-01Epub Date: 2023-11-09DOI: 10.1002/minf.202300141
Luca Chiesa, Emilie Sick, Esther Kellenberger
{"title":"Predicting the duration of action of β2-adrenergic receptor agonists: Ligand and structure-based approaches.","authors":"Luca Chiesa, Emilie Sick, Esther Kellenberger","doi":"10.1002/minf.202300141","DOIUrl":"10.1002/minf.202300141","url":null,"abstract":"<p><p>Agonists of the β2 adrenergic receptor (ADRB2) are an important class of medications used for the treatment of respiratory diseases. They can be classified as short acting (SABA) or long acting (LABA), with each class playing a different role in patient management. In this work we explored both ligand-based and structure-based high-throughput approaches to classify β2-agonists based on their duration of action. A completely in-silico prediction pipeline using an AlphaFold generated structure was used for structure-based modelling. Our analysis identified the ligands' 3D structure and lipophilicity as the most relevant features for the prediction of the duration of action. Interaction-based methods were also able to select ligands with the desired duration of action, incorporating the bias directly in the structure-based drug discovery pipeline without the need for further processing.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300141"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49691521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An in silico investigation of Kv2.1 potassium channel: Model building and inhibitors binding sites analysis.","authors":"Xiaoyu Wang, Xinyuan Zhang, Jie Zhou, Weiping Wang, Xiaoliang Wang, Bailing Xu","doi":"10.1002/minf.202300072","DOIUrl":"10.1002/minf.202300072","url":null,"abstract":"<p><p>Kv2.1 is widely expressed in brain, and inhibiting Kv2.1 is a potential strategy to prevent cell death and achieve neuroprotection in ischemic stroke. Herein, an in silico model of Kv2.1 tetramer structure was constructed by employing the AlphaFold-Multimer deep learning method to facilitate the rational discovery of Kv2.1 inhibitors. GaMD was utilized to create an ion transporting trajectory, which was analyzed with HMM to generate multiple representative receptor conformations. The binding site of RY785 and RY796(S) under the P-loop was defined with Fpocket program together with the competitive binding electrophysiology assay. The docking poses of the two inhibitors were predicted with the aid of the semi-empirical quantum mechanical calculation, and the IGMH results suggested that Met375, Thr376, and Thr377 of the P-helix and Ile405 of the S6 segment made significant contributions to the binding affinity. These results provided insights for rational molecular design to develop novel Kv2.1 inhibitors.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300072"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41141371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2023-12-01Epub Date: 2023-11-09DOI: 10.1002/minf.202300146
Prantar Dutta, Deepak Jain, Rakesh Gupta, Beena Rai
{"title":"Classification of tastants: A deep learning based approach.","authors":"Prantar Dutta, Deepak Jain, Rakesh Gupta, Beena Rai","doi":"10.1002/minf.202300146","DOIUrl":"10.1002/minf.202300146","url":null,"abstract":"<p><p>Predicting the taste of molecules is of critical importance in the food and beverages, flavor, and pharmaceutical industries for the design and screening of new tastants. In this work, we have built deep learning models to classify sweet, bitter, and umami molecules- the three basic tastes whose sensation is mediated by G protein-coupled receptors. An extensive dataset containing 1466 bitter, 1764 sweet, and 238 umami tastants was curated from existing literature. We analyzed the chemical characteristics of the molecules, with special focus on the presence of different functional groups. A deep neural network model based on molecular descriptors and a graph neural network model were trained for taste prediction. The class imbalance due to fewer umami molecules was tackled using special sampling techniques. Both models show comparable performance during evaluation, but the graph-based model can learn task-specific representations from the molecular structure without requiring handcrafted features. We further explain the deep neural network predictions using Shapley additive explanations. Finally, we demonstrated the applicability of the models by screening bitter, sweet, and umami molecules from a large food database. This study develops an in-silico approach to classify molecules based on their taste by leveraging the recent progress in deep learning, which can serve as a powerful tool for tastant design.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300146"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54230131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular InformaticsPub Date : 2023-12-01Epub Date: 2023-11-02DOI: 10.1002/minf.202300113
Shamsudin S Nasaev, Artem R Mukanov, Ivan I Kuznetsov, Alexander V Veselovsky
{"title":"AliNA - a deep learning program for RNA secondary structure prediction.","authors":"Shamsudin S Nasaev, Artem R Mukanov, Ivan I Kuznetsov, Alexander V Veselovsky","doi":"10.1002/minf.202300113","DOIUrl":"10.1002/minf.202300113","url":null,"abstract":"<p><p>Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202300113"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10591141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}