Molecular Brain最新文献

筛选
英文 中文
Moxibustion ameliorates chronic inflammatory visceral pain via spinal circRNA-miRNA-mRNA networks: a central mechanism study 艾灸通过脊髓 circRNA-miRNA-mRNA 网络改善慢性内脏炎症性疼痛:一项中心机制研究
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-05-15 DOI: 10.1186/s13041-024-01093-7
Dan Zhang, Xiaoqing Dong, Xiaoying Li, Yanting Yang, Hongna Li, Yue Hong, Guang Yang, Xiehe Kong, Xuejun Wang, Xiaopeng Ma
{"title":"Moxibustion ameliorates chronic inflammatory visceral pain via spinal circRNA-miRNA-mRNA networks: a central mechanism study","authors":"Dan Zhang, Xiaoqing Dong, Xiaoying Li, Yanting Yang, Hongna Li, Yue Hong, Guang Yang, Xiehe Kong, Xuejun Wang, Xiaopeng Ma","doi":"10.1186/s13041-024-01093-7","DOIUrl":"https://doi.org/10.1186/s13041-024-01093-7","url":null,"abstract":"This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA expression profiles were detected using the high-throughput sequencing technique. Relevant databases and bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion’s analgesic effect on visceral pain in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord and improving central sensitization.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"154 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic pain enhances excitability of corticotropin-releasing factor-expressing neurons in the oval part of the bed nucleus of the stria terminalis 慢性疼痛会增强纹状体末端床核卵圆形部分的促肾上腺皮质激素释放因子表达神经元的兴奋性
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-05-03 DOI: 10.1186/s13041-024-01094-6
Ryoko Uchida, Yasutaka Mukai, Taiju Amano, Kenji Sakimura, Keiichi Itoi, Akihiro Yamanaka, Masabumi Minami
{"title":"Chronic pain enhances excitability of corticotropin-releasing factor-expressing neurons in the oval part of the bed nucleus of the stria terminalis","authors":"Ryoko Uchida, Yasutaka Mukai, Taiju Amano, Kenji Sakimura, Keiichi Itoi, Akihiro Yamanaka, Masabumi Minami","doi":"10.1186/s13041-024-01094-6","DOIUrl":"https://doi.org/10.1186/s13041-024-01094-6","url":null,"abstract":"We previously reported that enhanced corticotropin-releasing factor (CRF) signaling in the bed nucleus of the stria terminalis (BNST) caused the aversive responses during acute pain and suppressed the brain reward system during chronic pain. However, it remains to be examined whether chronic pain alters the excitability of CRF neurons in the BNST. In this study we investigated the chronic pain-induced changes in excitability of CRF-expressing neurons in the oval part of the BNST (ovBNSTCRF neurons) by whole-cell patch-clamp electrophysiology. CRF-Cre; Ai14 mice were used to visualize CRF neurons by tdTomato. Electrophysiological recordings from brain slices prepared from a mouse model of neuropathic pain revealed that rheobase and firing threshold were significantly decreased in the chronic pain group compared with the sham-operated control group. Firing rate of the chronic pain group was higher than that of the control group. These data indicate that chronic pain elevated neuronal excitability of ovBNSTCRF neurons.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD 在一种注意力缺失症小鼠模型中,L-DOPA 通过 NEP 和 ADAM17 调节神经炎症和 Aβ 病理变化
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-04-30 DOI: 10.1186/s13041-024-01092-8
Hyun-ju Lee, JinHan Nam, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Su-Jeong Kim, A-Ran Jo, Hyang-Sook Hoe
{"title":"L-DOPA regulates neuroinflammation and Aβ pathology through NEP and ADAM17 in a mouse model of AD","authors":"Hyun-ju Lee, JinHan Nam, Jeong-Woo Hwang, Jin-Hee Park, Yoo Joo Jeong, Ji-Yeong Jang, Su-Jeong Kim, A-Ran Jo, Hyang-Sook Hoe","doi":"10.1186/s13041-024-01092-8","DOIUrl":"https://doi.org/10.1186/s13041-024-01092-8","url":null,"abstract":"Dopamine plays important roles in cognitive function and inflammation and therefore is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Drugs that increase or maintain dopamine levels in the brain could be a therapeutic strategy for AD. However, the effects of dopamine and its precursor levodopa (L-DOPA) on Aβ/tau pathology in vivo and the underlying molecular mechanisms have not been studied in detail. Here, we investigated whether L-DOPA treatment alters neuroinflammation, Aβ pathology, and tau phosphorylation in 5xFAD mice, a model of AD. We found that L-DOPA administration significantly reduced microgliosis and astrogliosis in 5xFAD mice. In addition, L-DOPA treatment significantly decreased Aβ plaque number by upregulating NEP and ADAM17 levels in 5xFAD mice. However, L-DOPA-treated 5xFAD mice did not exhibit changes in tau hyperphosphorylation or tau kinase levels. These data suggest that L-DOPA alleviates neuroinflammatory responses and Aβ pathology but not tau pathology in this mouse model of AD.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"23 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors 癌症恶病质状态伴随下丘脑小胶质细胞极化与抑制性免疫检查点受体低表达的外周-中央网络分析
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-04-29 DOI: 10.1186/s13041-024-01091-9
Yukari Suda, Keiko Nakamura, Fukiko Matsuyama, Yusuke Hamada, Hitoshi Makabe, Michiko Narita, Yasuyuki Nagumo, Tomohisa Mori, Naoko Kuzumaki, Minoru Narita
{"title":"Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors","authors":"Yukari Suda, Keiko Nakamura, Fukiko Matsuyama, Yusuke Hamada, Hitoshi Makabe, Michiko Narita, Yasuyuki Nagumo, Tomohisa Mori, Naoko Kuzumaki, Minoru Narita","doi":"10.1186/s13041-024-01091-9","DOIUrl":"https://doi.org/10.1186/s13041-024-01091-9","url":null,"abstract":"While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed “cachexia symptoms”, the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late “cachexia stage”, the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"44 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140811926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 37TrillionCells initiative for improving global healthcare via cell-based interception and precision medicine: focus on neurodegenerative diseases 通过细胞截获和精准医疗改善全球医疗保健的 37TrillionCells 计划:关注神经退行性疾病
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-04-11 DOI: 10.1186/s13041-024-01088-4
Benoit Coulombe, Thomas M. Durcan, Geneviève Bernard, Asmae Moursli, Christian Poitras, Denis Faubert, Maxime Pinard
{"title":"The 37TrillionCells initiative for improving global healthcare via cell-based interception and precision medicine: focus on neurodegenerative diseases","authors":"Benoit Coulombe, Thomas M. Durcan, Geneviève Bernard, Asmae Moursli, Christian Poitras, Denis Faubert, Maxime Pinard","doi":"10.1186/s13041-024-01088-4","DOIUrl":"https://doi.org/10.1186/s13041-024-01088-4","url":null,"abstract":"One of the main burdens in the treatment of diseases is imputable to the delay between the appearance of molecular dysfunctions in the first affected disease cells and their presence in sufficient number for detection in specific tissues or organs. This delay obviously plays in favor of disease progression to an extent that makes efficient treatments difficult, as they arrive too late. The development of a novel medical strategy, termed cell-based interception and precision medicine, seeks to identify dysfunctional cells early, when tissue damages are not apparent and symptoms not yet present, and develop therapies to treat diseases early. Central to this strategy is the use of single-cell technologies that allow detection of molecular changes in cells at the time of phenotypical bifurcation from health to disease. In this article we describe a general procedure to support such an approach applied to neurodegenerative disorders. This procedure combines four components directed towards highly complementary objectives: 1) a high-performance single-cell proteomics (SCP) method (Detect), 2) the development of disease experimental cell models and predictive computational models of cell trajectories (Understand), 3) the discovery of specific targets and personalized therapies (Cure), and 4) the creation of a community of collaborating laboratories to accelerate the development of this novel medical paradigm (Collaborate). A global initiative named 37TrillionCells (37TC) was launched to advance the development of cell-based interception and precision medicine.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"76 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptopodin is required for long-term depression at Schaffer collateral-CA1 synapses 沙弗旁侧-CA1突触的长期抑制需要突触素
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-04-02 DOI: 10.1186/s13041-024-01089-3
Yanis Inglebert, Pei You Wu, Julia Tourbina-Kolomiets, Cong Loc Dang, R. Anne McKinney
{"title":"Synaptopodin is required for long-term depression at Schaffer collateral-CA1 synapses","authors":"Yanis Inglebert, Pei You Wu, Julia Tourbina-Kolomiets, Cong Loc Dang, R. Anne McKinney","doi":"10.1186/s13041-024-01089-3","DOIUrl":"https://doi.org/10.1186/s13041-024-01089-3","url":null,"abstract":"Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"62 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140562285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. 经典和非经典 NLGN3 通路对早期社会发展和记忆表现的不同贡献
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-03-12 DOI: 10.1186/s13041-024-01087-5
Lin-Yu Li, Ayako Imai, Hironori Izumi, Ran Inoue, Yumie Koshidaka, Keizo Takao, Hisashi Mori, Tomoyuki Yoshida
{"title":"Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance.","authors":"Lin-Yu Li, Ayako Imai, Hironori Izumi, Ran Inoue, Yumie Koshidaka, Keizo Takao, Hisashi Mori, Tomoyuki Yoshida","doi":"10.1186/s13041-024-01087-5","DOIUrl":"10.1186/s13041-024-01087-5","url":null,"abstract":"<p><p>Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"16"},"PeriodicalIF":3.6,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10935922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spermidine treatment: induction of autophagy but also apoptosis? 精脒治疗:诱导自噬,也诱导细胞凋亡?
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-03-05 DOI: 10.1186/s13041-024-01085-7
Maxinne Watchon, Amanda L Wright, Holly I Ahel, Katherine J Robinson, Stuart K Plenderleith, Andrea Kuriakose, Kristy C Yuan, Angela S Laird
{"title":"Spermidine treatment: induction of autophagy but also apoptosis?","authors":"Maxinne Watchon, Amanda L Wright, Holly I Ahel, Katherine J Robinson, Stuart K Plenderleith, Andrea Kuriakose, Kristy C Yuan, Angela S Laird","doi":"10.1186/s13041-024-01085-7","DOIUrl":"10.1186/s13041-024-01085-7","url":null,"abstract":"<p><p>Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"15"},"PeriodicalIF":3.6,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation. 突变型α-突触核蛋白通过ERK1/2和JNK激活导致人类大脑皮层神经元死亡。
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-03-05 DOI: 10.1186/s13041-024-01086-6
Hidefumi Suzuki, Naohiro Egawa, Keiko Imamura, Takayuki Kondo, Takako Enami, Kayoko Tsukita, Mika Suga, Yuichiro Yada, Ran Shibukawa, Ryosuke Takahashi, Haruhisa Inoue
{"title":"Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation.","authors":"Hidefumi Suzuki, Naohiro Egawa, Keiko Imamura, Takayuki Kondo, Takako Enami, Kayoko Tsukita, Mika Suga, Yuichiro Yada, Ran Shibukawa, Ryosuke Takahashi, Haruhisa Inoue","doi":"10.1186/s13041-024-01086-6","DOIUrl":"10.1186/s13041-024-01086-6","url":null,"abstract":"<p><p>Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"14"},"PeriodicalIF":3.6,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140039814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crucial role of TFAP2B in the nervous system for regulating NREM sleep. TFAP2B 在神经系统中调节 NREM 睡眠的关键作用。
IF 3.6 3区 医学
Molecular Brain Pub Date : 2024-02-27 DOI: 10.1186/s13041-024-01084-8
Ayaka Nakai, Mitsuaki Kashiwagi, Tomoyuki Fujiyama, Kanako Iwasaki, Arisa Hirano, Hiromasa Funato, Masashi Yanagisawa, Takeshi Sakurai, Yu Hayashi
{"title":"Crucial role of TFAP2B in the nervous system for regulating NREM sleep.","authors":"Ayaka Nakai, Mitsuaki Kashiwagi, Tomoyuki Fujiyama, Kanako Iwasaki, Arisa Hirano, Hiromasa Funato, Masashi Yanagisawa, Takeshi Sakurai, Yu Hayashi","doi":"10.1186/s13041-024-01084-8","DOIUrl":"10.1186/s13041-024-01084-8","url":null,"abstract":"<p><p>The AP-2 transcription factors are crucial for regulating sleep in both vertebrate and invertebrate animals. In mice, loss of function of the transcription factor AP-2β (TFAP2B) reduces non-rapid eye movement (NREM) sleep. When and where TFAP2B functions, however, is unclear. Here, we used the Cre-loxP system to generate mice in which Tfap2b was specifically deleted in the nervous system during development and mice in which neuronal Tfap2b was specifically deleted postnatally. Both types of mice exhibited reduced NREM sleep, but the nervous system-specific deletion of Tfap2b resulted in more severe sleep phenotypes accompanied by defective light entrainment of the circadian clock and stereotypic jumping behavior. These findings indicate that TFAP2B in postnatal neurons functions at least partly in sleep regulation and imply that TFAP2B also functions either at earlier stages or in additional cell types within the nervous system.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"13"},"PeriodicalIF":3.6,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10900699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139983363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信