血清素增强阿尔茨海默病的神经发生生物标志物、海马体积和认知功能。

IF 3.3 3区 医学 Q2 NEUROSCIENCES
Ali Azargoonjahromi
{"title":"血清素增强阿尔茨海默病的神经发生生物标志物、海马体积和认知功能。","authors":"Ali Azargoonjahromi","doi":"10.1186/s13041-024-01169-4","DOIUrl":null,"url":null,"abstract":"<p><p>Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"93"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654273/pdf/","citationCount":"0","resultStr":"{\"title\":\"Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer's disease.\",\"authors\":\"Ali Azargoonjahromi\",\"doi\":\"10.1186/s13041-024-01169-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.</p>\",\"PeriodicalId\":18851,\"journal\":{\"name\":\"Molecular Brain\",\"volume\":\"17 1\",\"pages\":\"93\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654273/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13041-024-01169-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01169-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对血清素的研究表明,其在脑容量中的作用缺乏共识,特别是与神经发生和神经可塑性相关的生物标志物,如老年痴呆症(AD)中的睫状神经营养因子(CNTF)、成纤维细胞生长因子4 (FGF-4)、骨形态发生蛋白6 (BMP-6)和基质金属蛋白酶1 (MMP-1)。本研究旨在探讨血清素对AD认知功能相关的脑结构和海马体积的影响,以及其与CNTF、FGF-4、BMP-6和MMP-1等生物标志物的联系。来自133名ADNI AD患者的数据包括认知评估(CDR-SB),血清素测量(Biocrates AbsoluteIDQ p180试剂盒,UPLC-MS/MS),以及通过多重蛋白质组学量化的神经营养因子。采用体素形态学(VBM)结合MRI分析灰质体积变化。统计分析采用Pearson相关、bootstrap方法和经罗斯福调整的p值(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Serotonin enhances neurogenesis biomarkers, hippocampal volumes, and cognitive functions in Alzheimer's disease.

Research on serotonin reveals a lack of consensus regarding its role in brain volume, especially concerning biomarkers linked to neurogenesis and neuroplasticity, such as ciliary neurotrophic factor (CNTF), fibroblast growth factor 4 (FGF-4), bone morphogenetic protein 6 (BMP-6), and matrix metalloproteinase-1 (MMP-1) in Alzheimer's disease (AD). This study aimed to investigate the influence of serotonin on brain structure and hippocampal volumes in relation to cognitive functions in AD, as well as its link with biomarkers like CNTF, FGF-4, BMP-6, and MMP-1. Data from 133 ADNI participants with AD included cognitive assessments (CDR-SB), serotonin measurements (Biocrates AbsoluteIDQ p180 kit, UPLC-MS/MS), and neurotrophic factors quantified via multiplex proteomics. Gray matter volume changes were analyzed using Voxel-Based Morphometry (VBM) with MRI. Statistical analyses employed Pearson correlation, bootstrap methods, and FDR-adjusted p-values (< 0.05 or < 0.01) via the Benjamini-Hochberg procedure, alongside nonparametric methods. The analysis found a positive correlation between serotonin levels and total brain (r = 0.229, p = 0.023) and hippocampal volumes (right: r = 0.186, p = 0.032; left: r = 0.210, p = 0.023), even after FDR adjustment. Higher serotonin levels were linked to better cognitive function (negative correlation with CDR-SB, r = -0.230, p = 0.024). Notably, serotonin levels were positively correlated with BMP-6 (r = 0.173, p = 0.047), CNTF (r = 0.216, p = 0.013), FGF-4 (r = 0.176, p = 0.043), and MMP-1 (r = 0.202, p = 0.019), suggesting a link between serotonin and neurogenesis and neuroplasticity. However, after adjusting for multiple comparisons and controlling for confounding factors such as age, gender, education, and APOE genotypes (APOE3 and APOE4), none of the correlations of biomarkers remained statistically significant. In conclusion, increased serotonin levels are associated with improved cognitive function and increased brain volume. However, associations with CNTF, FGF-4, BMP-6, and MMP-1 were not statistically significant after adjustments, highlighting the complexity of serotonin's role in AD and the need for further research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Brain
Molecular Brain NEUROSCIENCES-
CiteScore
7.30
自引率
0.00%
发文量
97
审稿时长
>12 weeks
期刊介绍: Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings. Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信