National Science ReviewPub Date : 2024-10-25eCollection Date: 2024-11-01DOI: 10.1093/nsr/nwae380
Huiming Bao, Yongbo Peng, Xiaobin Cao
{"title":"Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H<sub>2</sub>S.","authors":"Huiming Bao, Yongbo Peng, Xiaobin Cao","doi":"10.1093/nsr/nwae380","DOIUrl":"10.1093/nsr/nwae380","url":null,"abstract":"<p><p>A synthesis of global barite sulfate isotope data from approximately 635 million years ago, at the end of a global glaciation, undermines the hypothesis that river sulfate was the primary carrier of the distinctive 17O-depleted atmospheric O2 signature of the time. Instead, an aqueous H2S oxidation model on the shelf emerges as a compelling alternative, though it demands extensive validation across multiple fronts by the scientific community.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae380"},"PeriodicalIF":16.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries.","authors":"Zhipin Ai, Julien Boulange, Xin Zhao, Fadong Li, Rashid Mahmood, Kiril Manevski, Yonghui Yang, Guirui Yu","doi":"10.1093/nsr/nwae374","DOIUrl":"10.1093/nsr/nwae374","url":null,"abstract":"<p><p>This study offers new insights into the heterogeneity behind the widely accepted notion that irrigated crops contribute 40% to global food production. It also highlights the potential of irrigation to mitigate the negative effects of climate change on crop yields.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae374"},"PeriodicalIF":16.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565227/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2024-10-21eCollection Date: 2024-11-01DOI: 10.1093/nsr/nwae313
Zengqian Hou, Jizhong Liu, Yigang Xu, Fuchuan Pang, Yuming Wang, Liping Qin, Yang Liu, Yu-Yan Sara Zhao, Guangfei Wei, Mengjiao Xu, Kun Jiang, Chuanpeng Hao, Shichao Ji, Renzhi Zhu, Bingkun Yu, Jia Liu, Zhenfeng Sheng, Juntao Wang, Chaolin Zhang, Yiliang Li
{"title":"The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.","authors":"Zengqian Hou, Jizhong Liu, Yigang Xu, Fuchuan Pang, Yuming Wang, Liping Qin, Yang Liu, Yu-Yan Sara Zhao, Guangfei Wei, Mengjiao Xu, Kun Jiang, Chuanpeng Hao, Shichao Ji, Renzhi Zhu, Bingkun Yu, Jia Liu, Zhenfeng Sheng, Juntao Wang, Chaolin Zhang, Yiliang Li","doi":"10.1093/nsr/nwae313","DOIUrl":"10.1093/nsr/nwae313","url":null,"abstract":"<p><p>We present the proposed strategic study, 'Integrated elements for Martian life signature exploration', to support the sampling and identification of any potential biosignatures in compliance with the engineering constraints of the Tianwen-3 mission.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae313"},"PeriodicalIF":16.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2024-10-15eCollection Date: 2024-11-01DOI: 10.1093/nsr/nwae360
Ting Wang, Ying-Jiao Zhan, Ming-Jun Chen, Lei He, Wen-Li An, Shimei Xu, Wei Wang, Jian-Jun Shi, Hai-Bo Zhao, Yu-Zhong Wang
{"title":"Reversible-gel-assisted, ambient-pressure-dried, multifunctional, flame-retardant biomass aerogels with smart high-strength-elasticity transformation.","authors":"Ting Wang, Ying-Jiao Zhan, Ming-Jun Chen, Lei He, Wen-Li An, Shimei Xu, Wei Wang, Jian-Jun Shi, Hai-Bo Zhao, Yu-Zhong Wang","doi":"10.1093/nsr/nwae360","DOIUrl":"10.1093/nsr/nwae360","url":null,"abstract":"<p><p>Bio-based aerogels, which are poised as compelling thermal insulators, demand intricate synthesis procedures and have limited durability under harsh conditions. The integration of smart stimuli-response transitions in biomass aerogels holds promise as a solution, yet remains a challenge. Here, we introduce a pioneering strategy that employs reversible-gel-assisted ambient-pressure drying without organic solvents to craft multifunctional bio-based aerogels. By exploiting the thermally reversible gelling propensity of select biomasses, we anchor emulsified bubbles within cross-linked hydrogels, circumventing surface tension issues during mild drying. The resultant aerogels feature a robust porous matrix that is imbued with stable bubbles, yielding low thermal conductivity, high flame retardancy and robust resistance to diverse rigors. This innovative approach facilitates a paradigm shift in intelligent fire protection in which aerogels transition from robust to flexible in response to water stimuli, effectively shielding against thermal hazards and external forces. This work opens up a facile, eco-friendly and mild way to fabricate advanced biomass aerogels with stimuli-responsive transformation.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae360"},"PeriodicalIF":16.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2024-10-15eCollection Date: 2024-10-01DOI: 10.1093/nsr/nwae357
Wei Yan
{"title":"The development of polymers and fibers: an interview with Stephen Cheng.","authors":"Wei Yan","doi":"10.1093/nsr/nwae357","DOIUrl":"https://doi.org/10.1093/nsr/nwae357","url":null,"abstract":"<p><p><i>Polymer and fiber science has evolved significantly since the 1920s, with polymers becoming integral to both industry and daily life. China's fiber research, initiated in the 1950s, has made substantial societal and technological contributions, particularly in chemical fibers. How will future advancements in polymers and fibers address ongoing challenges and drive further innovation</i>? <i>NSR spoke to Prof. Stephen Cheng, a member of the National Academy of Engineering (U.S.) and former Dean of the College of Polymer Science and Polymer Engineering at the University of Akron. He is currently Dean and Honorable Professor at South China University of Technology. His research interests center on the condensed states in polymers, liquid crystals, surfactants and hybrid materials, focusing on the interactions, responses, dynamics and structures of materials at varying lengths, energy and timescales, in which the material itself embodies the technology</i>.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 10","pages":"nwae357"},"PeriodicalIF":16.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2024-10-15eCollection Date: 2024-11-01DOI: 10.1093/nsr/nwae359
Mengkang Shen, Zhongqin Dai, Ling Fan, Hongwei Fu, Yuanhui Geng, Jie Guan, Fanfei Sun, Apparao M Rao, Jiang Zhou, Bingan Lu
{"title":"Cosolvent electrolyte chemistries for high-voltage potassium-ion battery.","authors":"Mengkang Shen, Zhongqin Dai, Ling Fan, Hongwei Fu, Yuanhui Geng, Jie Guan, Fanfei Sun, Apparao M Rao, Jiang Zhou, Bingan Lu","doi":"10.1093/nsr/nwae359","DOIUrl":"10.1093/nsr/nwae359","url":null,"abstract":"<p><p>The poor oxidation resistance of traditional electrolytes has hampered the development of high-voltage potassium-ion battery technology. Here, we present a cosolvent electrolyte design strategy to overcome the high-voltage limitations of potassium-ion electrolyte chemistries. The cosolvent electrolyte breaks the dissolution limitation of the salt through ion-dipole interactions, significantly enlarging the anion-rich solvation clusters, as verified by the <i>insitu</i> synchrotron-based wide-angle X-ray scattering experiments. Furthermore, the large anion-rich solvation clusters also facilitate the formation of an effective electrode-electrolyte interphase, thereby enhancing compatibility with high-voltage electrodes. The cosolvent electrolyte enables K||Prussian blue cells (2-4.5 V) to operate for >700 cycles with a capacity retention of 91.9%. Our cosolvent electrolyte design strategy paves new avenues for the development of high-voltage potassium-ion batteries and beyond.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae359"},"PeriodicalIF":16.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Van der Waals epitaxial growth of single-crystal molecular film.","authors":"Lixin Liu, Penglai Gong, Kailang Liu, Bingrong Huang, Zhihao Zhang, Yingshuang Fu, Yu Wu, Yinghe Zhao, Meihui Wang, Yongshan Xu, Huiqiao Li, Tianyou Zhai","doi":"10.1093/nsr/nwae358","DOIUrl":"https://doi.org/10.1093/nsr/nwae358","url":null,"abstract":"<p><p>Epitaxy is the cornerstone of semiconductor technology, enabling the fabrication of single-crystal film. Recent advancements in van der Waals (vdW) epitaxy have opened new avenues for producing wafer-scale single-crystal 2D atomic crystals. However, when it comes to molecular crystals, the overall weak vdW force means that it is a significant challenge for small molecules to form a well-ordered structure during epitaxy. Here we demonstrate that the vdW epitaxy of Sb<sub>2</sub>O<sub>3</sub> molecular crystal, where the whole growth process is governed by vdW interactions, can be precisely controlled. The nucleation is deterministically modulated by epilayer-substrate interactions and unidirectional nuclei are realized through designing the lattice and symmetry matching between epilayer and substrate. Moreover, the growth and coalescence of nuclei as well as the layer-by-layer growth mode are kinetically realized via tackling the Schwoebel-Ehrlich barrier. Such precise control of vdW epitaxy enables the growth of single-crystal Sb<sub>2</sub>O<sub>3</sub> molecular film with desirable thickness. Using the ultrathin highly oriented Sb<sub>2</sub>O<sub>3</sub> film as a gate dielectric, we fabricated MoS<sub>2</sub>-based field-effect transistors that exhibit superior device performance. The results substantiate the viability of precisely managing molecule alignment in vdW epitaxy, paving the way for large-scale synthesis of single-crystal 2D molecular crystals.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae358"},"PeriodicalIF":16.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2024-10-11eCollection Date: 2024-09-01DOI: 10.1093/nsr/nwae344
Shang-Da Jiang, Li-Zhu Wu, Song Gao
{"title":"The emergence of electron spin in interdisciplinary research in chemistry.","authors":"Shang-Da Jiang, Li-Zhu Wu, Song Gao","doi":"10.1093/nsr/nwae344","DOIUrl":"https://doi.org/10.1093/nsr/nwae344","url":null,"abstract":"","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 9","pages":"nwae344"},"PeriodicalIF":16.3,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469729/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}