National Science ReviewPub Date : 2025-03-04eCollection Date: 2025-04-01DOI: 10.1093/nsr/nwaf081
Yilei Wu, Xiaoyan Li, Rong Guo, Ruiqi Xu, Ming-Gang Ju, Jinlan Wang
{"title":"How to accelerate the inorganic materials synthesis: from computational guidelines to data-driven method?","authors":"Yilei Wu, Xiaoyan Li, Rong Guo, Ruiqi Xu, Ming-Gang Ju, Jinlan Wang","doi":"10.1093/nsr/nwaf081","DOIUrl":"10.1093/nsr/nwaf081","url":null,"abstract":"<p><p>The development of novel functional materials has attracted widespread attention to meet the constantly growing demand for addressing the major global challenges facing humanity, among which experimental synthesis emerges as one of the crucial challenges. Understanding the synthesis processes and predicting the outcomes of synthesis experiments are essential for increasing the success rate of experiments. With the advancements in computational power and the emergence of machine learning (ML) techniques, computational guidelines and data-driven methods have significantly contributed to accelerating and optimizing material synthesis. Herein, a review of the latest progress on the computation-guided and ML-assisted inorganic material synthesis is presented. First, common synthesis methods for inorganic materials are introduced, followed by a discussion of physical models based on thermodynamics and kinetics, which are relevant to the synthesis feasibility of inorganic materials. Second, data acquisition, commonly utilized material descriptors, and ML techniques in ML-assisted inorganic material synthesis are discussed. Third, applications of ML techniques in inorganic material synthesis are presented, which are classified according to different material data sources. Finally, we highlight the crucial challenges and promising opportunities for ML-assisted inorganic materials synthesis. This review aims to provide critical scientific guidance for future advancements in ML-assisted inorganic materials synthesis.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf081"},"PeriodicalIF":16.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960098/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"China's greenhouse gas budget during 2000-2023.","authors":"Wenping Yuan, Minqi Liang, Yuanyi Gao, Ling Huang, Li Dan, Hongtao Duan, Songbai Hong, Fei Jiang, Weimin Ju, Tingting Li, Ziyang Lou, Shilong Luan, Xiao Lu, Zhangcai Qin, Lishan Ran, Lulu Shen, Fei Teng, Xiangjun Tian, Yilong Wang, Jing Wei, Jiangzhou Xia, Xiaosheng Xia, Lijun Yu, Xu Yue, Haicheng Zhang, Wen Zhang, Yuzhong Zhang, Xu Zhao, Qiuan Zhu, Shilong Piao, Xuhui Wang","doi":"10.1093/nsr/nwaf069","DOIUrl":"10.1093/nsr/nwaf069","url":null,"abstract":"<p><p>National greenhouse gas (GHG) budget, including CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O has increasingly become a topic of concern in international climate governance. China is paying increasing attention to reducing GHG emissions and increasing land sinks to effectively mitigate climate change. Accurate estimates of GHG fluxes are crucial for monitoring progress toward mitigating GHG emissions in China. This study used comprehensive methods, including emission factor methods, process-based models, atmospheric inversions, and data-driven models, to estimate the long-term trends of GHG sources and sinks from all anthropogenic and natural sectors in China's mainland during 2000-2023, and produced an up-to-date China GHG Budget dataset (CNGHG). The total gross emissions of the three GHGs show a 3-fold increase from 5.0 (95% CI: 4.9-5.1) Gt CO<sub>2</sub>-eq yr<sup>-1</sup> (in 2000) to 14.3 (95% CI: 13.8-14.8) Gt CO<sub>2</sub>-eq yr<sup>-1</sup> (in 2023). CO<sub>2</sub> emissions represented 81.8% of the GHG emissions in 2023, while 12.7% and 5.5% were for CH<sub>4</sub> and N<sub>2</sub>O, respectively. As the largest CO<sub>2</sub> source, the energy sector contributed 87.4% CO<sub>2</sub> emissions. In contrast, the agriculture, forestry and other land use sector was the largest sector of CH<sub>4</sub> and N<sub>2</sub>O, representing 50.1% and 66.3% emissions, respectively. Moreover, China's terrestrial ecosystems serve as a net CO<sub>2</sub> sink (1.0 Gt CO<sub>2</sub> yr<sup>-1</sup>, 95% CI: 0.2-1.9 Gt CO<sub>2</sub> yr<sup>-1</sup>) during 2012 to 2021, equivalent to an average of 14.3% of fossil CO<sub>2</sub> emissions. Our GHG emission estimates showed a general consistency with national GHG inventories, with gridded and sector-specific estimates of GHG fluxes over China, providing the basis for curtailing GHG emissions for each region and sector.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf069"},"PeriodicalIF":16.3,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11951099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-coordinating charge transfer enables ultrafast desolvation of hydrated zinc ions in the outer Helmholtz layer for stable aqueous Zn metal batteries.","authors":"Xiuli Guo, Qiaoling Peng, Rui Yang, Gengyou Cao, Jianfeng Wen, Kyungsoo Shin, Ye Zheng, Sarayut Tunmee, Caineng Zou, Yongping Zheng, Xiaolong Zhou, Yongbing Tang","doi":"10.1093/nsr/nwaf070","DOIUrl":"10.1093/nsr/nwaf070","url":null,"abstract":"<p><p>The formation of a strong coordination structure, [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> often increases direct contact between the solvated H<sub>2</sub>O and Zn anodes in the inner Helmholtz layer, which exacerbates undesirable side reactions and dendrite growth, hindering the practical application of aqueous Zn metal batteries. Here, we show that the solvated H<sub>2</sub>O can be effectively minimized by an artificial solid electrolyte interphase (SEI) consisting of highly nitrogen-doped amorphous carbon (NC) and perfluorosulfonic acid polymer (Nafion). Theoretical and experimental analyses reveal that NC raises the Fermi level of the composite SEI and activates the non-coordinating charge transfer from the SEI to [Zn(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup>, which leads to ultrafast desolvation of hydrated Zn-ions in the outer Helmholtz layer; while the Nafion framework ensures selective transport channels for Zn ions. Remarkably, the derived NC-Nafion@Zn symmetric cell exhibits a long lifespan (3400 h, 1 mA cm<sup>-2</sup>; 2000 h, 5 mA cm<sup>-2</sup>); moreover, the NC-Nafion@Zn//Mn<sub>4</sub>O<sub>3</sub>-carbon nanotubes full battery delivers ultralong cycling stability of 9300 cycles at 2 A g<sup>-1</sup> with a high retention of 91.3%.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf070"},"PeriodicalIF":16.3,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrosion-resistant single-atom catalysts for direct seawater electrolysis.","authors":"Yue Zhang, Weikang Wan, Yudi Peng, Yujun Guo, Jialing Zhou, Shengchen Wang, Jiayao Yuan, Yuru Liao, Linsheng Liu, Yifan Zhang, Suli Liu, Dingsheng Wang, Zhihui Dai","doi":"10.1093/nsr/nwaf060","DOIUrl":"10.1093/nsr/nwaf060","url":null,"abstract":"<p><p>Direct seawater electrolysis (DSE) for hydrogen production is an appealing method for renewable energy storage. However, DSE faces challenges such as slow reaction kinetics, impurities, the competing chlorine evolution reaction at the anode, and membrane fouling, making it more complex than freshwater electrolysis. Therefore, developing catalysts with excellent stability under corrosion and fulfilling activity is vital to the advancement of DSE. Single-atom catalysts (SACs) with excellent tunability, high selectivity and high active sites demonstrate considerable potential for use in the electrolysis of seawater. In this review, we present the anodic and cathodic reaction mechanisms that occur during seawater cracking. Subsequently, to meet the challenges of DSE, rational strategies for modulating SACs are explored, including axial ligand engineering, carrier effects and protective layer coverage. Then, the application of <i>in-situ</i> characterization techniques and theoretical calculations to SACs is discussed with the aim of elucidating the intrinsic factors responsible for their efficient electrocatalysis. Finally, the process of scaling up monoatomic catalysts for the electrolysis of seawater is described, and some prospective insights are provided.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 4","pages":"nwaf060"},"PeriodicalIF":16.3,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960101/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2025-02-21eCollection Date: 2025-03-01DOI: 10.1093/nsr/nwaf034
Fangxu Zhou, Zehua Li, Haifeng Li, Yao Lu, Linjia Cheng, Ying Zhang, Zichen Wang, Jing Nie, Heping Cheng, Bin Dong, Lei Ma, Li Yang
{"title":"An initiative on digital nephrology: the Kidney Imageomics Project.","authors":"Fangxu Zhou, Zehua Li, Haifeng Li, Yao Lu, Linjia Cheng, Ying Zhang, Zichen Wang, Jing Nie, Heping Cheng, Bin Dong, Lei Ma, Li Yang","doi":"10.1093/nsr/nwaf034","DOIUrl":"10.1093/nsr/nwaf034","url":null,"abstract":"","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 3","pages":"nwaf034"},"PeriodicalIF":16.3,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879410/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143557252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
National Science ReviewPub Date : 2025-02-17eCollection Date: 2025-02-01DOI: 10.1093/nsr/nwaf035
Zhijun Jin, Chuan Zhang
{"title":"Five grand challenges for decarbonization of China's energy system.","authors":"Zhijun Jin, Chuan Zhang","doi":"10.1093/nsr/nwaf035","DOIUrl":"https://doi.org/10.1093/nsr/nwaf035","url":null,"abstract":"","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwaf035"},"PeriodicalIF":16.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835015/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}