{"title":"Novel production strategy of drug-encapsulated biodegradable scaffolds for remediation of hidradenitis suppurativa","authors":"Mert Gezek, Hanne Meryem Kayadurmus, Elif Ilhan, Sumeyye Cesur, Elif Kaya, Gulgun Bosgelmez Tinaz, Basak Dalbayrak, Elif Damla Arisan, Canan Ekinci Dogan, Oguzhan Gunduz, Roger Narayan","doi":"10.1557/s43577-024-00756-z","DOIUrl":"https://doi.org/10.1557/s43577-024-00756-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>This study examined producing three-dimensional printed CS scaffolds coated with rifampicin (RIF)-loaded poly(lactic acid) (PLA) microparticles to treat hidradenitis suppurativa lesions. The morphology of the particle-coated scaffolds was examined; it was observed that the particles obtained were monodisperse and of an ideal size for the intended application. According to the drug-release results, the release of drugs was completed in 24 h from the CS/PLA-2RIF scaffold and in 48 h from the CS/PLA-3RIF scaffold. Antimicrobial analysis was performed using <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>; the scaffolds showed effectiveness against these bacterial strains. Per MTT analysis, the scaffolds had no toxic effects; it was noted that the cells easily adapted to the scaffold. The results from the encapsulated rifampicin-loaded PLA-coated CS scaffolds indicate that these scaffolds are a promising alternative method for treating hidradenitis suppurativa.</p><h3 data-test=\"abstract-sub-heading\">Impact statement</h3><p>This study evaluated the creation of three-dimensional (3D) printed CS scaffolds that were coated with rifampicin (RIF)-loaded poly(lactic acid) (PLA) microparticles; the goal of this approach involves the treatment of the lesions associated with hidradenitis suppurativa (HS). The drug-release results indicate that the release of the drugs was completed in 24 h from the CS/PLA-2RIF scaffold and in 48 h from the CS/PLA-3RIF scaffold. Antimicrobial analysis was conducted using <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>; the scaffolds showed effectiveness against these bacterial strains. Larger zones were demonstrated in testing the scaffolds with gram-positive bacteria; smaller zones were demonstrated in testing the scaffolds with gram-negative bacteria. The PLS/CS scaffold was associated with a small inhibition zone; this finding was attributed to the natural antimicrobial effect of CS. The MTT results suggest that scaffolds were not associated with toxic effects. The results of this study suggest that the wound dressing obtained by combining 3D printing and EHDA methods could provide an alternative approach to treat HS.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-07-29DOI: 10.1557/s43577-024-00764-z
Markus J. Buehler
{"title":"Advancing materials: From sustainable composites, to perovskite nanostructures, to soft human–machine interfaces","authors":"Markus J. Buehler","doi":"10.1557/s43577-024-00764-z","DOIUrl":"https://doi.org/10.1557/s43577-024-00764-z","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifiller carbon nanotube, graphene, and carbon black composite filaments: A path to versatile electromaterials","authors":"Sandra Lepak-Kuc, Łukasz Nowicki, Agnieszka Lekawa-Raus, Malgorzata Jakubowska","doi":"10.1557/s43577-024-00757-y","DOIUrl":"https://doi.org/10.1557/s43577-024-00757-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Addressing the growing demand for conductive and flexible composites, this research focuses on producing thermoplastic composite fibers made of polyurethane and carbon nanomaterials featuring the highest possible electrical conductivity. Based on a recently developed methodology enabling the formation of very high filler contents of 40% w/w, this work presents a systematic investigation of the role of all the materials used during the manufacturing process and selects the materials that ensure the best electrical performance. The results show that the highest electrical conductivity and current-carrying capacities are obtained when dimethylformamide is used as a solvent, and small amounts of AKM surfactant aid the de-agglomeration of carbon nanomaterials. It is also shown that the hybridization of MWCNTs filler with graphene nanoplatelets and small amounts of carbon black is beneficial for the electrical properties. However, the highest performance is achieved with SWCNTs as fillers, exhibiting two orders of magnitude higher electrical conductivities of 6.17 × 10<sup>4</sup> S/m.</p><h3 data-test=\"abstract-sub-heading\">Impact statement</h3><p>The article presents a pioneering exploration into the synthesis and application of a novel composite material. This research significantly impacts the field of electromaterials by introducing a cutting-edge approach that leverages the synergistic properties of carbon nanotubes, graphene, and carbon black within a single filament. The impact of this research extends beyond the laboratory, influencing the development of next-generation materials that bridge the gap between conventional materials and advanced nanomaterials. The presented composite filaments open avenues for the creation of innovative devices and systems that demand good mechanical strength, electrical conductivity, and thermal stability. Moreover, the versatility of these filaments allows for the optimization of materials properties, enabling customization based on specific application requirements. In addition to its technological significance, the paper contributes to sustainability efforts by facilitating the production of lightweight, energy-efficient materials. The insights provided by this research have the potential to reshape the landscape of materials science, inspiring further exploration and innovation in the quest for versatile and high-performance electromaterials.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141869405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-07-16DOI: 10.1557/s43577-024-00759-w
Judy Meiksin, Sophia Chen, Kazi Zihan Hossain, Molly McDonough
{"title":"The 2024 MRS Spring Meeting & Exhibit made its debut in Seattle!","authors":"Judy Meiksin, Sophia Chen, Kazi Zihan Hossain, Molly McDonough","doi":"10.1557/s43577-024-00759-w","DOIUrl":"https://doi.org/10.1557/s43577-024-00759-w","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141642668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-07-15DOI: 10.1557/s43577-024-00749-y
A. Promi, Katelyn Meyer, Rupayan Ghosh, Feng Lin
{"title":"Advancing electric mobility with lithium-ion batteries: A materials and sustainability perspective","authors":"A. Promi, Katelyn Meyer, Rupayan Ghosh, Feng Lin","doi":"10.1557/s43577-024-00749-y","DOIUrl":"https://doi.org/10.1557/s43577-024-00749-y","url":null,"abstract":"In the last three decades, lithium-ion batteries (LIBs) have become one of the most influential technologies in the world, allowing the widespread adoption of consumer electronics and now electric vehicles (EVs), a key technology for tackling climate change. Decades of research in both academia and industry have led to the development of diverse chemistries for LIB components, aligning these technological advancements with global carbon neutrality goals. In this article, we discuss the fundamental materials chemistries employed in LIBs for EVs, focusing on how materials-level properties influence the electrochemical performance of the battery. We elaborate on factors such as supply-chain sustainability, raw materials availability, and geopolitical influences that shape the market dynamics of these battery materials. Additionally, we delve into current innovative materials design strategies aimed at enhancing the performance of LIBs, with a focus on improving energy density, safety, stability, and fast-charging capabilities. Finally, we offer our insights into the future trajectory of EV batteries, considering the ongoing research trends and evolving landscape of EVs in the context of global efforts toward a more sustainable and environmentally friendly transportation system.\u0000 Graphical abstract","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-07-15DOI: 10.1557/s43577-024-00738-1
Yiyang Li, M. Lukatskaya
{"title":"Materials challenges for electric vehicles","authors":"Yiyang Li, M. Lukatskaya","doi":"10.1557/s43577-024-00738-1","DOIUrl":"https://doi.org/10.1557/s43577-024-00738-1","url":null,"abstract":"","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141647449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mrs BulletinPub Date : 2024-07-15DOI: 10.1557/s43577-024-00750-5
Geetak Gupta, E. Ahmadi
{"title":"(Ultra)wide-bandgap semiconductors for electric vehicles","authors":"Geetak Gupta, E. Ahmadi","doi":"10.1557/s43577-024-00750-5","DOIUrl":"https://doi.org/10.1557/s43577-024-00750-5","url":null,"abstract":"The power electronics charging the battery or driving the motor is often the limiting factor for cost and efficiency. In the race for lowering electric vehicle (EV) costs and enabling widespread adoption, careful design of the power electronics is key. EV manufacturers spend a significant amount of effort in evaluating various power-conversion circuit topologies and various power switches to optimize the cost and efficiency of the EV. The right power electronics material can enable improvement in range as well as reduction in size, weight, and cost. This article discusses the essential role of power electronics in EVs and introduces potential materials capable of meeting these requirements, shedding light on their respective advantages and limitations in addressing the evolving needs of power electronics in the context of EVs.\u0000 Graphical abstract","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}