NaturePub Date : 2024-11-20DOI: 10.1038/s41586-024-08255-6
Catherine E. Schretter, Tom Hindmarsh Sten, Nathan Klapoetke, Mei Shao, Aljoscha Nern, Marisa Dreher, Daniel Bushey, Alice A. Robie, Adam L. Taylor, Kristin Branson, Adriane Otopalik, Vanessa Ruta, Gerald M. Rubin
{"title":"Social state alters vision using three circuit mechanisms in Drosophila","authors":"Catherine E. Schretter, Tom Hindmarsh Sten, Nathan Klapoetke, Mei Shao, Aljoscha Nern, Marisa Dreher, Daniel Bushey, Alice A. Robie, Adam L. Taylor, Kristin Branson, Adriane Otopalik, Vanessa Ruta, Gerald M. Rubin","doi":"10.1038/s41586-024-08255-6","DOIUrl":"https://doi.org/10.1038/s41586-024-08255-6","url":null,"abstract":"<p>Animals are often bombarded with visual information and must prioritize specific visual features based on their current needs. The neuronal circuits that detect and relay visual features have been well studied<sup>1,2,3,4,5,6,7,8</sup>. Much less is known about how an animal adjusts its visual attention as its goals or environmental conditions change. During social behaviours, flies need to focus on nearby flies<sup>9,10,11</sup>. Here we study how the flow of visual information is altered when female <i>Drosophila</i> enter an aggressive state. From the connectome, we identify three state-dependent circuit motifs poised to modify the response of an aggressive female to fly-sized visual objects: convergence of excitatory inputs from neurons conveying select visual features and internal state; dendritic disinhibition of select visual feature detectors; and a switch that toggles between two visual feature detectors. Using cell-type-specific genetic tools, together with behavioural and neurophysiological analyses, we show that each of these circuit motifs is used during female aggression. We reveal that features of this same switch operate in male <i>Drosophila</i> during courtship pursuit, suggesting that disparate social behaviours may share circuit mechanisms. Our study provides a compelling example of using the connectome to infer circuit mechanisms that underlie dynamic processing of sensory signals.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"170 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/s41586-024-08208-z
Marc Robin, Elodie Mouloungui, Gabriel Castillo Dali, Yan Wang, Jean-Louis Saffar, Graciela Pavon-Djavid, Thibaut Divoux, Sébastien Manneville, Luc Behr, Delphine Cardi, Laurence Choudat, Marie-Madeleine Giraud-Guille, Anne Meddahi-Pellé, Fannie Baudimont, Marie-Laure Colombier, Nadine Nassif
{"title":"Mineralized collagen plywood contributes to bone autograft performance","authors":"Marc Robin, Elodie Mouloungui, Gabriel Castillo Dali, Yan Wang, Jean-Louis Saffar, Graciela Pavon-Djavid, Thibaut Divoux, Sébastien Manneville, Luc Behr, Delphine Cardi, Laurence Choudat, Marie-Madeleine Giraud-Guille, Anne Meddahi-Pellé, Fannie Baudimont, Marie-Laure Colombier, Nadine Nassif","doi":"10.1038/s41586-024-08208-z","DOIUrl":"https://doi.org/10.1038/s41586-024-08208-z","url":null,"abstract":"<p>Autologous bone (AB) is the gold standard for bone-replacement surgeries<sup>1</sup>, despite its limited availability and the need for an extra surgical site. Traditionally, competitive biomaterials for bone repair have focused on mimicking the mineral aspect of bone, as evidenced by the widespread clinical use of bioactive ceramics<sup>2</sup>. However, AB also exhibits hierarchical organic structures that might substantially affect bone regeneration. Here, using a range of cell-free biomimetic-collagen-based materials in murine and ovine bone-defect models, we demonstrate that a hierarchical hybrid microstructure—specifically, the twisted plywood pattern of collagen and its association with poorly crystallized bioapatite—favourably influences bone regeneration. Our study shows that the most structurally biomimetic material has the potential to stimulate bone growth, highlighting the pivotal role of physicochemical properties in supporting bone formation and offering promising prospects as a competitive bone-graft material.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"14 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/s41586-024-08178-2
Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita, Daniel J. Egger
{"title":"Combining quantum processors with real-time classical communication","authors":"Almudena Carrera Vazquez, Caroline Tornow, Diego Ristè, Stefan Woerner, Maika Takita, Daniel J. Egger","doi":"10.1038/s41586-024-08178-2","DOIUrl":"https://doi.org/10.1038/s41586-024-08178-2","url":null,"abstract":"<p>Quantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time and is limited to a few quantum bits, that is, qubits, typically arranged in a planar connectivity<sup>1</sup>. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). The community hopes to tackle these limitations by connecting QPUs using classical communication, which has not yet been proven experimentally. Here we experimentally realize error-mitigated dynamic circuits and circuit cutting to create quantum states requiring periodic connectivity using up to 142 qubits spanning two QPUs with 127 qubits each connected in real time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, that is, within a fraction of the coherence time of the qubits. Our real-time classical link enables us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU. Furthermore, the error-mitigated control flow enhances qubit connectivity and the instruction set of the hardware thus increasing the versatility of our quantum computers. Our work demonstrates that we can use several quantum processors as one with error-mitigated dynamic circuits enabled by a real-time classical link.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"99 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03762-y
{"title":"Computational technologies of the Human Cell Atlas","authors":"","doi":"10.1038/d41586-024-03762-y","DOIUrl":"https://doi.org/10.1038/d41586-024-03762-y","url":null,"abstract":"As the international effort reaches a ‘critical mass’ of achievements, Nature highlights seven tools that are poised to enable the next set of discoveries.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"14 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03521-z
{"title":"Half of the top 20 science cities are now in China — and regional city growth is the key","authors":"","doi":"10.1038/d41586-024-03521-z","DOIUrl":"https://doi.org/10.1038/d41586-024-03521-z","url":null,"abstract":"The country’s research progress means its cities might lead in all Nature Index subjects within a decade.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"251 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03783-7
{"title":"Ferocity of Atlantic hurricanes surges as the ocean warms","authors":"","doi":"10.1038/d41586-024-03783-7","DOIUrl":"https://doi.org/10.1038/d41586-024-03783-7","url":null,"abstract":"Climate change has driven hurricane wind speeds up by an average of nearly 30 kilometres per hour, an analysis of Atlantic storms shows.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"1 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human HDAC6 senses valine abundancy to regulate DNA damage","authors":"Jiali Jin, Tong Meng, Yuanyuan Yu, Shuheng Wu, Chen-Chen Jiao, Sihui Song, Ya-Xu Li, Yu Zhang, Yuan-Yuan Zhao, Xinran Li, Zixin Wang, Yu-Fan Liu, Runzhi Huang, Jieling Qin, Yihua Chen, Hao Cao, Xiao Tan, Xin Ge, Cong Jiang, Jianhuang Xue, Jian Yuan, Dianqing Wu, Wei Wu, Ci-Zhong Jiang, Ping Wang","doi":"10.1038/s41586-024-08248-5","DOIUrl":"https://doi.org/10.1038/s41586-024-08248-5","url":null,"abstract":"<p>As an essential branched amino acid, valine is pivotal for protein synthesis, neurological behaviour, haematopoiesis and leukaemia progression<sup>1,2,3</sup>. However, the mechanism by which cellular valine abundancy is sensed for subsequent cellular functions remains undefined. Here we identify that human histone deacetylase 6 (HDAC6) serves as a valine sensor by directly binding valine through a primate-specific SE14 repeat domain. The nucleus and cytoplasm shuttling of human, but not mouse, HDAC6 is tightly controlled by the intracellular levels of valine. Valine deprivation leads to HDAC6 retention in the nucleus and induces DNA damage. Mechanistically, nuclear-localized HDAC6 binds and deacetylates ten-eleven translocation 2 (TET2) to initiate active DNA demethylation, which promotes DNA damage through thymine DNA glycosylase-driven excision. Dietary valine restriction inhibits tumour growth in xenograft and patient-derived xenograft models, and enhances the therapeutic efficacy of PARP inhibitors. Collectively, our study identifies human HDAC6 as a valine sensor that mediates active DNA demethylation and DNA damage in response to valine deprivation, and highlights the potential of dietary valine restriction for cancer treatment.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"73 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03529-5
{"title":"Boston’s dense health-sciences networks help the city to maintain its lead","authors":"","doi":"10.1038/d41586-024-03529-5","DOIUrl":"https://doi.org/10.1038/d41586-024-03529-5","url":null,"abstract":"But Chinese cities are quickly rising, thanks to significant government investment and targeted legislation.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"70 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03237-0
{"title":"Should I climb the career ladder as a manager, or will I regret leaving the lab bench behind?","authors":"","doi":"10.1038/d41586-024-03237-0","DOIUrl":"https://doi.org/10.1038/d41586-024-03237-0","url":null,"abstract":"I’m not sure if a management role in science is for me. How do I decide?","PeriodicalId":18787,"journal":{"name":"Nature","volume":"35 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NaturePub Date : 2024-11-20DOI: 10.1038/d41586-024-03757-9
{"title":"How students and grandparents could solve the global mental-health crisis","authors":"","doi":"10.1038/d41586-024-03757-9","DOIUrl":"https://doi.org/10.1038/d41586-024-03757-9","url":null,"abstract":"African researchers piloted a slew of innovative, low-cost programmes for addressing the troubling shortage of mental-health professionals on the continent. Now the rest of the world is taking notice.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"12 1","pages":""},"PeriodicalIF":64.8,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}