Sang Ah Yi, Daseul Cho, Sujin Kim, Hyunjin Kim, Myung Kyung Choi, Hee Seong Choi, Sukjin Shin, Sujin Yun, Ahjin Lim, Jae Kyun Jeong, Da Eun Yoon, Hye Ji Cha, Kyoungmi Kim, Jeung-Whan Han, Hyun-Soo Cho, Jeonghee Cho
{"title":"Functional loss of ERBB receptor feedback inhibitor 1 (MIG6) promotes glioblastoma tumorigenesis by aberrant activation of epidermal growth factor receptor (EGFR).","authors":"Sang Ah Yi, Daseul Cho, Sujin Kim, Hyunjin Kim, Myung Kyung Choi, Hee Seong Choi, Sukjin Shin, Sujin Yun, Ahjin Lim, Jae Kyun Jeong, Da Eun Yoon, Hye Ji Cha, Kyoungmi Kim, Jeung-Whan Han, Hyun-Soo Cho, Jeonghee Cho","doi":"10.1002/1878-0261.13717","DOIUrl":"https://doi.org/10.1002/1878-0261.13717","url":null,"abstract":"<p><p>Dysregulation of epidermal growth factor receptor (EGFR) is one of the most common mechanisms associated with the pathogenesis of various cancers. Mitogen-inducible gene 6 [MIG6; also known as ERBB receptor feedback inhibitor 1 (ERRFI1)], identified as a feedback inhibitor of EGFR, negatively regulates EGFR by directly inhibiting its kinase activity and facilitating its internalization, subsequently leading to degradation. Despite its proposed role as an EGFR-dependent tumor suppressor, the functional consequences and clinical relevance in cancer etiology remain incompletely understood. Here, we identify that the stoichiometric balance between MIG6 and EGFR is crucial in promoting EGFR-dependent oncogenic growth in various experimental model systems. In addition, a subset of ERRFI1 (the official gene symbol of MIG6) mutations exhibit impaired ability to suppress the enzymatic activation of EGFR at multiple levels. In summary, our data suggest that decreased or loss of MIG6 activity can lead to abnormal activation of EGFR, potentially contributing to cellular transformation. We propose that the mutation status of ERRFI1 and the expression levels of MIG6 can serve as additional biomarkers for guiding EGFR-targeted cancer therapies, including glioblastoma.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yoshinori Hayashi, Janelle-Cheri Millen, Romela Irene Ramos, Jennifer A Linehan, Timothy G Wilson, Dave S B Hoon, Matias A Bustos
{"title":"Cell-free and extracellular vesicle microRNAs with clinical utility for solid tumors.","authors":"Yoshinori Hayashi, Janelle-Cheri Millen, Romela Irene Ramos, Jennifer A Linehan, Timothy G Wilson, Dave S B Hoon, Matias A Bustos","doi":"10.1002/1878-0261.13709","DOIUrl":"https://doi.org/10.1002/1878-0261.13709","url":null,"abstract":"<p><p>As cutting-edge technologies applied for the study of body fluid molecular biomarkers are continuously evolving, clinical applications of these biomarkers improve. Diverse forms of circulating molecular biomarkers have been described, including cell-free DNA (cfDNA), circulating tumor cells (CTCs), and cell-free microRNAs (cfmiRs), although unresolved issues remain in their applicability, specificity, sensitivity, and reproducibility. Translational studies demonstrating the clinical utility and importance of cfmiRs in multiple cancers have significantly increased. This review aims to summarize the last 5 years of translational cancer research in the field of cfmiRs and their potential clinical applications to diagnosis, prognosis, and monitoring disease recurrence or treatment responses with a focus on solid tumors. PubMed was utilized for the literature search, following rigorous exclusion criteria for studies based on tumor types, patient sample size, and clinical applications. A total of 136 studies on cfmiRs in different solid tumors were identified and divided based on tumor types, organ sites, number of cfmiRs found, methodology, and types of biofluids analyzed. This comprehensive review emphasizes clinical applications of cfmiRs and summarizes underserved areas where more research and validations are needed.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan Stevens, Yuanli Wang, Stephanie J Bouley, Torrey R Mandigo, Aditi Sharma, Sonali Sengupta, Amy Housden, Norbert Perrimon, James A Walker, Benjamin E Housden
{"title":"Inhibition of autophagy as a novel treatment for neurofibromatosis type 1 tumors.","authors":"Megan Stevens, Yuanli Wang, Stephanie J Bouley, Torrey R Mandigo, Aditi Sharma, Sonali Sengupta, Amy Housden, Norbert Perrimon, James A Walker, Benjamin E Housden","doi":"10.1002/1878-0261.13704","DOIUrl":"https://doi.org/10.1002/1878-0261.13704","url":null,"abstract":"<p><p>Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects. Therefore, there is a clear need to discover new drugs to target NF1-deficient tumor cells. Using a Drosophila cell model of NF1, we performed synthetic lethal screens to identify novel drug targets. We identified 54 gene candidates, which were validated with variable dose analysis as a secondary screen. Pathways associated with five candidates could be targeted using existing drugs. Among these, chloroquine (CQ) and bafilomycin A1, known to target the autophagy pathway, showed the greatest potential for selectively killing NF1-deficient Drosophila cells. When further investigating autophagy-related genes, we found that 14 out of 30 genes tested had a synthetic lethal interaction with NF1. These 14 genes are involved in multiple aspects of the autophagy pathway and can be targeted with additional drugs that mediate the autophagy pathway, although CQ was the most effective. The lethal effect of autophagy inhibitors was conserved in a panel of human NF1-deficient Schwann cell lines, highlighting their translational potential. The effect of CQ was also conserved in a Drosophila NF1 in vivo model and in a xenografted NF1-deficient tumor cell line grown in mice, with CQ treatment resulting in a more significant reduction in tumor growth than selumetinib treatment. Furthermore, combined treatment with CQ and selumetinib resulted in a further reduction in NF1-deficient cell viability. In conclusion, NF1-deficient cells are vulnerable to disruption of the autophagy pathway. This pathway represents a promising target for the treatment of NF1-associated tumors, and we identified CQ as a candidate drug for the treatment of NF1 tumors.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nour A Aljouda, Dewan Shrestha, Chelsea DeVaux, Rachelle R Olsen, Satyanarayana Alleboina, Megan Walker, Yong Cheng, Kevin W Freeman
{"title":"Transcription factor 4 is a key mediator of oncogenesis in neuroblastoma by promoting MYC activity.","authors":"Nour A Aljouda, Dewan Shrestha, Chelsea DeVaux, Rachelle R Olsen, Satyanarayana Alleboina, Megan Walker, Yong Cheng, Kevin W Freeman","doi":"10.1002/1878-0261.13714","DOIUrl":"10.1002/1878-0261.13714","url":null,"abstract":"<p><p>Super-enhancer-associated transcription factor networks define cell identity in neuroblastoma (NB). Dysregulation of these transcription factors contributes to the initiation and maintenance of NB by enforcing early developmental identity states. We report that the class I basic helix-loop-helix (bHLH) transcription factor 4 (TCF4; also known as E2-2) is a critical NB dependency gene that significantly contributes to these identity states through heterodimerization with cell-identity-specific bHLH transcription factors. Knockdown of TCF4 significantly induces apoptosis in vitro and inhibits tumorigenicity in vivo. We used genome-wide expression profiling, TCF4 chromatin immunoprecipitation sequencing (ChIP-seq) and TCF4 immunoprecipitation-mass spectrometry to determine the role of TCF4 in NB cells. Our results, along with recent findings in NB for the transcription factors T-box transcription factor TBX2, heart- and neural crest derivatives-expressed protein 2 (HAND2) and twist-related protein 1 (TWIST1), propose a role for TCF4 in regulating forkhead box protein M1 (FOXM1)/transcription factor E2F-driven gene regulatory networks that control cell cycle progression in cooperation with N-myc proto-oncogene protein (MYCN), TBX2, and the TCF4 dimerization partners HAND2 and TWIST1. Collectively, we showed that TCF4 promotes cell proliferation through direct transcriptional regulation of the c-MYC/MYCN oncogenic program that drives high-risk NB. Mechanistically, our data suggest the novel finding that TCF4 acts to support MYC activity by recruiting multiple factors known to regulate MYC function to sites of colocalization between critical NB transcription factors, TCF4 and MYC oncoproteins. Many of the TCF4-recruited factors are druggable, giving insight into potential therapies for high-risk NB. This study identifies a new function for class I bHLH transcription factors (e.g., TCF3, TCF4, and TCF12) that are important in cancer and development.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Javier Conde, Isabel Fernández-Pisonero, L Francisco Lorenzo-Martín, Rocío García-Gómez, Berta Casar, Piero Crespo, Xosé R Bustelo
{"title":"The mevalonate pathway contributes to breast primary tumorigenesis and lung metastasis.","authors":"Javier Conde, Isabel Fernández-Pisonero, L Francisco Lorenzo-Martín, Rocío García-Gómez, Berta Casar, Piero Crespo, Xosé R Bustelo","doi":"10.1002/1878-0261.13716","DOIUrl":"https://doi.org/10.1002/1878-0261.13716","url":null,"abstract":"<p><p>The mevalonate pathway plays an important role in breast cancer and other tumor types. However, many issues remain obscure as yet regarding its mechanism of regulation and action. In the present study, we report that the expression of mevalonate pathway enzymes is mediated by the RHO guanosine nucleotide exchange factors VAV2 and VAV3 in a RAC1- and sterol regulatory element-binding factor (SREBF)-dependent manner in breast cancer cells. Furthermore, in vivo tumorigenesis experiments indicated that the two most upstream steps of this metabolic pathway [3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR)] are important for primary tumorigenesis, angiogenesis, and cell survival in breast cancer cells. HMGCR, but not HMGCS1, is also important for the extravasation and subsequent fitness of breast cancer cells in the lung parenchyma. Genome-wide expression analyses revealed that HMGCR influences the expression of gene signatures linked to proliferation, metabolism, and immune responses. The HMGCR-regulated gene signature predicts long-term tumor recurrence but not metastasis in cohorts of nonsegregated and chemotherapy-resistant breast cancer patients. These results reveal a hitherto unknown, VAV-catalysis-dependent mechanism involved in the regulation of the mevalonate pathway in breast cancer cells. They also identify specific mevalonate-pathway-dependent processes that contribute to the malignant features of breast cancer cells.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kimberley McGrail, Elena González-Sánchez, Paula Granado-Martínez, Roberto Orsenigo, Yuxin Ding, Berta Ferrer, Javier Hernández-Losa, Iván Ortega, Juan Martín-Caballero, Eva Muñoz-Couselo, Vicente García-Patos, Juan A Recio
{"title":"Loss of Lkb1 cooperates with Braf<sup>V600E</sup> and ultraviolet radiation, increasing melanoma multiplicity and neural-like dedifferentiation.","authors":"Kimberley McGrail, Elena González-Sánchez, Paula Granado-Martínez, Roberto Orsenigo, Yuxin Ding, Berta Ferrer, Javier Hernández-Losa, Iván Ortega, Juan Martín-Caballero, Eva Muñoz-Couselo, Vicente García-Patos, Juan A Recio","doi":"10.1002/1878-0261.13715","DOIUrl":"https://doi.org/10.1002/1878-0261.13715","url":null,"abstract":"<p><p>The mechanisms that work alongside BRAF<sup>V600E</sup> oncogene in melanoma development, in addition to ultraviolet (UV) radiation (UVR), are of great interest. Analysis of human melanoma tumors [data from The Cancer Genome Atlas (TCGA)] revealed that 50% or more of the samples expressed no or low amounts of serine/threonine protein kinase STK11 (also known as LKB1) protein. Here, we report that, in a mouse model, concomitant neonatal Braf<sup>V600E</sup> activation and Lkb1 tumor suppressor ablation in melanocytes led to full melanoma development. A single postnatal dose of UVB radiation had no effect on melanoma onset in Lkb1-depleted mice compared with Braf<sup>V600E</sup>-irradiated mice, but increased tumor multiplicity. In concordance with these findings and previous reports, Lkb1-null irradiated mice exhibited deficient DNA damage repair (DDR). Histologically, tumors lacking Lkb1 were enriched in neural-like tumor morphology. Genetic profiling and gene set enrichment analyses of tumor sample mutated genes indicated that loss of Lkb1 promoted the selection of altered genes associated with neural differentiation processes. Thus, these results suggest that the loss of Lkb1 cooperates with Braf<sup>V600E</sup> and UVR, impairing the DDR and increasing melanoma multiplicity and neural-like dedifferentiation.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juliane Albrecht, Mirjam Müller, Völundur Hafstað, Kamila Kaminska, Johan Vallon-Christersson, Gabriella Honeth, Helena Persson
{"title":"Dynamic methylation and expression of alternative promoters for oestrogen receptor alpha in cell line models of fulvestrant resistance.","authors":"Juliane Albrecht, Mirjam Müller, Völundur Hafstað, Kamila Kaminska, Johan Vallon-Christersson, Gabriella Honeth, Helena Persson","doi":"10.1002/1878-0261.13713","DOIUrl":"https://doi.org/10.1002/1878-0261.13713","url":null,"abstract":"<p><p>Oestrogen receptor alpha (ER; gene symbol ESR1) is the most important prognostic and treatment-predictive biomarker in breast cancer. Drugs targeting oestrogen and ER for endocrine therapy of breast cancer include aromatase inhibitors, the selective ER modulator tamoxifen and the selective ER degrader fulvestrant. Tumours can develop resistance to endocrine therapy through several mechanisms, which is often linked to altered expression of ER. To investigate the role of promoter methylation in the regulation of ESR1 expression, we used bisulfite sequencing to measure methylation at CpG sites in alternative ER promoter regions for six cell line models of fulvestrant resistance. Both CpG methylation and expression of alternative first exons changed dynamically, with striking differences between cell lines that had stable or unstable resistance upon fulvestrant withdrawal. Methylation at some CpG sites was strongly negatively correlated with expression of specific first exons. In a breast tumour cohort, higher relative expression of upstream alternative first exons was associated with worse prognosis in post-menopausal women with ER-positive tumours who received endocrine therapy.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Volga M Saini, Ezgi Oner, Mark P Ward, Sinead Hurley, Brian David Henderson, Faye Lewis, Stephen P Finn, Gerard J Fitzmaurice, John J O'Leary, Sharon O'Toole, Lorraine O'Driscoll, Kathy Gately
{"title":"A comparative study of circulating tumor cell isolation and enumeration technologies in lung cancer.","authors":"Volga M Saini, Ezgi Oner, Mark P Ward, Sinead Hurley, Brian David Henderson, Faye Lewis, Stephen P Finn, Gerard J Fitzmaurice, John J O'Leary, Sharon O'Toole, Lorraine O'Driscoll, Kathy Gately","doi":"10.1002/1878-0261.13705","DOIUrl":"https://doi.org/10.1002/1878-0261.13705","url":null,"abstract":"<p><p>Circulating tumor cells (CTCs) have potential as diagnostic, prognostic, and predictive biomarkers in solid tumors. Despite Food and Drug Administration (FDA) approval of CTC devices in various cancers, the rarity and heterogeneity of CTCs in lung cancer make them technically challenging to isolate and analyze, hindering their clinical integration. Establishing a consensus through comparative analysis of different CTC systems is warranted. This study aimed to evaluate seven different CTC enrichment methods across five technologies using a standardized spike-in protocol: the CellMag™ (EpCAM-dependent enrichment), EasySep™ and RosetteSep™ (blood cell depletion), and the Parsortix® PR1 and the new design Parsortix® Prototype (PP) (size- and deformability-based enrichment). The Parsortix® systems were also evaluated for any differences in recovery rates between cell harvest versus in-cassette staining. Healthy donor blood (5 mL) was spiked with 100 fluorescently labeled EpCAM<sup>high</sup> H1975 cells, processed through each system, and the isolation efficiency was calculated. The CellMag™ had the highest recovery rate (70 ± 14%), followed by Parsortix® PR1 in-cassette staining, while the EasySep™ had the lowest recovery (18 ± 8%). Additional spike-in experiments were performed with EpCAM<sup>moderate</sup> A549 and EpCAM<sup>low</sup> H1299 cells using the CellMag™ and Parsortix® PR1 in-cassette staining. The recovery rate of CellMag™ significantly reduced to 35 ± 14% with A549 cells and 1 ± 1% with H1299 cells. However, the Parsortix® PR1 in-cassette staining showed cell phenotype-independent and consistent recovery rates among all lung cancer cell lines: H1975 (49 ± 2%), A549 (47 ± 10%), and H1299 (52 ± 10%). Furthermore, we demonstrated that the Parsortix® PR1 in-cassette staining method is capable of isolating heterogeneous single CTCs and cell clusters from patient samples. The Parsortix® PR1 in-cassette staining, capable of isolating different phenotypes of CTCs as either single cells or cell clusters with consistent recovery rates, is considered optimal for CTC enrichment for lung cancer, albeit needing further optimization and validation.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adrish Sen, Salmaan Khan, Stefano Rossetti, Aaron Broege, Ian MacNeil, Ann DeLaForest, Jhomary Molden, Laura Davis, Charles Iversrud, Megan Seibel, Ross Kopher, Stephen Schulz, Lance Laing
{"title":"Assessments of prostate cancer cell functions highlight differences between a pan-PI3K/mTOR inhibitor, gedatolisib, and single-node inhibitors of the PI3K/AKT/mTOR pathway.","authors":"Adrish Sen, Salmaan Khan, Stefano Rossetti, Aaron Broege, Ian MacNeil, Ann DeLaForest, Jhomary Molden, Laura Davis, Charles Iversrud, Megan Seibel, Ross Kopher, Stephen Schulz, Lance Laing","doi":"10.1002/1878-0261.13703","DOIUrl":"https://doi.org/10.1002/1878-0261.13703","url":null,"abstract":"<p><p>Metastatic castration-resistant prostate cancer (mCRPC) is characterized by loss of androgen receptor (AR) sensitivity and oncogenic activation of the PI3K/AKT/mTOR (PAM) pathway. Loss of the PI3K regulator PTEN is frequent during prostate cancer (PC) initiation, progression, and therapeutic resistance. Co-targeting the PAM/AR pathways is a promising mCRPC treatment strategy but is hampered by reciprocal negative feedback inhibition or feedback relief. Most PAM inhibitors selectively spare (or weakly inhibit) one or more key nodes of the PAM pathway, potentiating drug resistance depending on the PAM pathway mutation status of patients. We posited that gedatolisib, a uniformly potent inhibitor of all class I PI3K isoforms, as well as mTORC1 and mTORC2, would be more effective than inhibitors targeting single PAM pathway nodes in PC cells. Using a combination of functional and metabolic assays, we evaluated a panel of PC cell lines with different PTEN/PIK3CA status for their sensitivity to multi-node PAM inhibitors (PI3K/mTOR: gedatolisib, samotolisib) and single-node PAM inhibitors (PI3Kα: alpelisib; AKT: capivasertib; mTOR: everolimus). Gedatolisib induced anti-proliferative and cytotoxic effects with greater potency and efficacy relative to the other PAM inhibitors, independent of PTEN/PIK3CA status. The superior effects of gedatolisib were likely associated with more effective inhibition of critical PAM-controlled cell functions, including cell cycle, survival, protein synthesis, oxygen consumption rate, and glycolysis. Our results indicate that potent and simultaneous blockade of all class I PI3K isoforms, mTORC1, and mTORC2 could circumvent PTEN-dependent resistance. Gedatolisib, as a single agent and in combination with other therapies, reported promising preliminary efficacy and safety in various solid tumor types. Gedatolisib is currently being evaluated in a Phase 1/2 clinical trial in combination with darolutamide in patients with mCRPC previously treated with an AR inhibitor, and in a Phase 3 clinical trial in combination with palbociclib and fulvestrant in patients with HR+/HER2- advanced breast cancer.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Glutathione S-transferase omega class 1 (GSTO1)-associated large extracellular vesicles are involved in tumor-associated macrophage-mediated cisplatin resistance in bladder cancer.","authors":"Yi-Cheng Pan, Pei-Yi Chu, Ching-Chan Lin, Ching-Yun Hsieh, Wei-Yu Hsu, Lie-Fen Shyur, Juan-Cheng Yang, Wei-Chao Chang, Yang-Chang Wu","doi":"10.1002/1878-0261.13659","DOIUrl":"10.1002/1878-0261.13659","url":null,"abstract":"<p><p>Bladder cancer poses a significant challenge to chemotherapy due to its resistance to cisplatin, especially at advanced stages. Understanding the mechanisms behind cisplatin resistance is crucial for improving cancer therapy. The enzyme glutathione S-transferase omega class 1 (GSTO1) is known to be involved in cisplatin resistance in colon cancer. This study focused on its role in cisplatin resistance in bladder cancer. Our analysis of protein expression in bladder cancer cells stimulated by secretions from tumor-associated macrophages (TAMs) showed a significant increase in GSTO1. This prompted further investigation into the role of GSTO1 in bladder cancer. We found a strong correlation between GSTO1 expression and cisplatin resistance. Mechanistically, GSTO1 triggered the release of large extracellular vesicles (EVs) that promoted cisplatin efflux, thereby reducing cisplatin-DNA adduct formation and enhancing cisplatin resistance. Inhibition of EV release effectively counteracted the cisplatin resistance associated with GSTO1. In conclusion, GSTO1-mediated EV release may contribute to cisplatin resistance caused by TAMs in bladder cancer. Strategies to target GSTO1 could potentially improve the efficacy of cisplatin in treating bladder cancer.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"1866-1884"},"PeriodicalIF":6.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}