Livia Concetti, Manuel Scimeca, Julia Bischof, Jonathan Woodsmith, Massimiliano Agostini, Cristina Fiorani, Yufang Shi, Eleonora Candi, Gerry Melino, Alessandro Mauriello, Giuseppe S Sica
{"title":"共识分子亚型1 (CMS1)结直肠癌免疫应答抑制的多组学特征提高了精准医学。","authors":"Livia Concetti, Manuel Scimeca, Julia Bischof, Jonathan Woodsmith, Massimiliano Agostini, Cristina Fiorani, Yufang Shi, Eleonora Candi, Gerry Melino, Alessandro Mauriello, Giuseppe S Sica","doi":"10.1002/1878-0261.70023","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a heterogenous disease with distinct biological and clinical subgroups, each with different prognoses and responses to therapy. In this case report, taking inspiration from a case of locally advanced CRC with serine/threonine-protein kinase B-raf (BRAF) V600E mutation, we highlight an atypical consensus molecular subtype 1 (CMS1). Deep multi-omic analyses showed a limited expression of programmed cell death protein 1 (PD-1) and reduced T-cell infiltration, including CD8<sup>+</sup> and natural killer (NK) cells, in the analyzed CMS1 tumor. In parallel, a reduced activation of the JAK/STAT pathway was detected, suggesting a lack of clinical response to immunotherapy with checkpoint inhibitors. Furthermore, the finding of up-regulated expression of WEE1 G2 checkpoint kinase (WEE1), checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2), poly(ADP-ribose) polymerase (PARP), and heat shock protein 90 (HSP90) suggests a potential alternative therapeutic approach using inhibitors of the cell cycle, HSP90, or PARP in combination with conventional chemotherapy, targeted agents, or immunotherapy. This paradigmatic case should stimulate a regular deep omics analysis to improve precision medicine. We therefore suggest that full mutational and expression profiling analyses of CRC subtypes should be undertaken to improve therapeutic strategies in CRC treatment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-omic characterization of consensus molecular subtype 1 (CMS1) colorectal cancer with dampened immune response improves precision medicine.\",\"authors\":\"Livia Concetti, Manuel Scimeca, Julia Bischof, Jonathan Woodsmith, Massimiliano Agostini, Cristina Fiorani, Yufang Shi, Eleonora Candi, Gerry Melino, Alessandro Mauriello, Giuseppe S Sica\",\"doi\":\"10.1002/1878-0261.70023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) is a heterogenous disease with distinct biological and clinical subgroups, each with different prognoses and responses to therapy. In this case report, taking inspiration from a case of locally advanced CRC with serine/threonine-protein kinase B-raf (BRAF) V600E mutation, we highlight an atypical consensus molecular subtype 1 (CMS1). Deep multi-omic analyses showed a limited expression of programmed cell death protein 1 (PD-1) and reduced T-cell infiltration, including CD8<sup>+</sup> and natural killer (NK) cells, in the analyzed CMS1 tumor. In parallel, a reduced activation of the JAK/STAT pathway was detected, suggesting a lack of clinical response to immunotherapy with checkpoint inhibitors. Furthermore, the finding of up-regulated expression of WEE1 G2 checkpoint kinase (WEE1), checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2), poly(ADP-ribose) polymerase (PARP), and heat shock protein 90 (HSP90) suggests a potential alternative therapeutic approach using inhibitors of the cell cycle, HSP90, or PARP in combination with conventional chemotherapy, targeted agents, or immunotherapy. This paradigmatic case should stimulate a regular deep omics analysis to improve precision medicine. We therefore suggest that full mutational and expression profiling analyses of CRC subtypes should be undertaken to improve therapeutic strategies in CRC treatment.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.70023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Multi-omic characterization of consensus molecular subtype 1 (CMS1) colorectal cancer with dampened immune response improves precision medicine.
Colorectal cancer (CRC) is a heterogenous disease with distinct biological and clinical subgroups, each with different prognoses and responses to therapy. In this case report, taking inspiration from a case of locally advanced CRC with serine/threonine-protein kinase B-raf (BRAF) V600E mutation, we highlight an atypical consensus molecular subtype 1 (CMS1). Deep multi-omic analyses showed a limited expression of programmed cell death protein 1 (PD-1) and reduced T-cell infiltration, including CD8+ and natural killer (NK) cells, in the analyzed CMS1 tumor. In parallel, a reduced activation of the JAK/STAT pathway was detected, suggesting a lack of clinical response to immunotherapy with checkpoint inhibitors. Furthermore, the finding of up-regulated expression of WEE1 G2 checkpoint kinase (WEE1), checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2), poly(ADP-ribose) polymerase (PARP), and heat shock protein 90 (HSP90) suggests a potential alternative therapeutic approach using inhibitors of the cell cycle, HSP90, or PARP in combination with conventional chemotherapy, targeted agents, or immunotherapy. This paradigmatic case should stimulate a regular deep omics analysis to improve precision medicine. We therefore suggest that full mutational and expression profiling analyses of CRC subtypes should be undertaken to improve therapeutic strategies in CRC treatment.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.