Nur Aininie Yusoh, Liping Su, Suet Lin Chia, Xiaohe Tian, Haslina Ahmad, Martin R Gill
{"title":"Olaparib synergy screen reveals Exemestane induces replication stress in triple-negative breast cancer.","authors":"Nur Aininie Yusoh, Liping Su, Suet Lin Chia, Xiaohe Tian, Haslina Ahmad, Martin R Gill","doi":"10.1002/1878-0261.70093","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) remains the breast cancer subtype with the poorest prognosis. While PARP inhibitors (PARPi) effectively target BRCA1/2-mutant TNBCs via synthetic lethality, most TNBCs are BRCA1/2 wild-type. Synergistic drug combinations may expand PARPi efficacy to BRCA-proficient TNBC. To identify new PARPi combinations, we screened a library of 166 FDA-approved oncology drugs for synergy with Olaparib in TNBC cells. We found that Exemestane, an aromatase inhibitor, synergized with Olaparib, significantly decreasing IC<sub>50</sub> values and clonogenicity while increasing DNA damage and apoptosis. The mechanistic basis for this synergy was rationalized by the previously unreported ability of Exemestane to induce replication stress via reactive oxygen species (ROS) generation and oxidative stress. This combination had low cytotoxicity toward normal breast epithelial cells, and Exemestane has no reported severe toxicity as a monotherapy. The combination of Olaparib and Exemestane was able to achieve enhanced tumor growth inhibition in a murine xenograft model, greater than either drug employed as a single agent, and GO and KEGG enrichment analysis indicated alterations in pathways associated with cell death in response to Exemestane and Olaparib treatment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Triple-negative breast cancer (TNBC) remains the breast cancer subtype with the poorest prognosis. While PARP inhibitors (PARPi) effectively target BRCA1/2-mutant TNBCs via synthetic lethality, most TNBCs are BRCA1/2 wild-type. Synergistic drug combinations may expand PARPi efficacy to BRCA-proficient TNBC. To identify new PARPi combinations, we screened a library of 166 FDA-approved oncology drugs for synergy with Olaparib in TNBC cells. We found that Exemestane, an aromatase inhibitor, synergized with Olaparib, significantly decreasing IC50 values and clonogenicity while increasing DNA damage and apoptosis. The mechanistic basis for this synergy was rationalized by the previously unreported ability of Exemestane to induce replication stress via reactive oxygen species (ROS) generation and oxidative stress. This combination had low cytotoxicity toward normal breast epithelial cells, and Exemestane has no reported severe toxicity as a monotherapy. The combination of Olaparib and Exemestane was able to achieve enhanced tumor growth inhibition in a murine xenograft model, greater than either drug employed as a single agent, and GO and KEGG enrichment analysis indicated alterations in pathways associated with cell death in response to Exemestane and Olaparib treatment.
Molecular OncologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍:
Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles.
The journal is now fully Open Access with all articles published over the past 10 years freely available.