Molecular plant pathology最新文献

筛选
英文 中文
A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri. 环状双GMP结合适配蛋白与N5-谷氨酰胺甲基转移酶相互作用,调控柠檬黄单胞菌亚种的致病机理。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-07-01 DOI: 10.1111/mpp.13496
Yu Shi, Tianfang Cheng, Qing Wei Cheang, Xiaoyan Zhao, Zeling Xu, Zhao-Xun Liang, Linghui Xu, Junxia Wang
{"title":"A cyclic di-GMP-binding adaptor protein interacts with a N5-glutamine methyltransferase to regulate the pathogenesis in Xanthomonas citri subsp. citri.","authors":"Yu Shi, Tianfang Cheng, Qing Wei Cheang, Xiaoyan Zhao, Zeling Xu, Zhao-Xun Liang, Linghui Xu, Junxia Wang","doi":"10.1111/mpp.13496","DOIUrl":"10.1111/mpp.13496","url":null,"abstract":"<p><p>The second messenger cyclic diguanylate monophosphate (c-di-GMP) regulates a wide range of bacterial behaviours through diverse mechanisms and binding receptors. Single-domain PilZ proteins, the most widespread and abundant known c-di-GMP receptors in bacteria, act as trans-acting adaptor proteins that enable c-di-GMP to control signalling pathways with high specificity. This study identifies a single-domain PilZ protein, XAC3402 (renamed N5MapZ), from the phytopathogen Xanthomonas citri subsp. citri (Xcc), which modulates Xcc virulence by directly interacting with the methyltransferase HemK. Through yeast two-hybrid, co-immunoprecipitation and immunofluorescent staining, we demonstrated that N5MapZ and HemK interact directly under both in vitro and in vivo conditions, with the strength of the protein-protein interaction decreasing at high c-di-GMP concentrations. This finding distinguishes N5MapZ from other characterized single-domain PilZ proteins, as it was previously known that c-di-GMP enhances the interaction between those single-domain PilZs and their protein partners. This observation is further supported by the fact that the c-di-GMP binding-defective mutant N5MapZ<sup>R10A</sup> can interact with HemK to inhibit the methylation of the class 1 translation termination release factor PrfA. Additionally, we found that HemK plays an important role in Xcc pathogenesis, as the deletion of hemK leads to extensive phenotypic changes, including reduced virulence in citrus plants, decreased motility, production of extracellular enzymes and stress tolerance. Gene expression analysis has revealed that c-di-GMP and the HemK-mediated pathway regulate the expression of multiple virulence effector proteins, uncovering a novel regulatory mechanism through which c-di-GMP regulates Xcc virulence by mediating PrfA methylation via the single-domain PilZ adaptor protein N5MapZ.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13496"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250160/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'. 对 "抗性与易感性蓝莓栽培品种在受到Colletotrichum acutatum感染后差异表达基因的鉴定 "的更正。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-07-01 DOI: 10.1111/mpp.13495
{"title":"Correction to 'Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum'.","authors":"","doi":"10.1111/mpp.13495","DOIUrl":"10.1111/mpp.13495","url":null,"abstract":"","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13495"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232046/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae. 一种新的与 MAP 激酶相互作用的蛋白 MoSmi1 可调控木格氏真菌的发育和致病性。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-07-01 DOI: 10.1111/mpp.13493
Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang
{"title":"A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae.","authors":"Yu Wang, Xinyue Cui, Junlian Xiao, Xiaoru Kang, Jinmei Hu, Zhicheng Huang, Na Li, Chuyu Yang, Yuemin Pan, Shulin Zhang","doi":"10.1111/mpp.13493","DOIUrl":"10.1111/mpp.13493","url":null,"abstract":"<p><p>The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13493"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence. 利用 PSTVd 基因组序列预测受 PSTVd 感染的番茄植株的症状严重程度。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-07-01 DOI: 10.1111/mpp.13469
Jianqiang Sun, Yosuke Matsushita
{"title":"Predicting symptom severity in PSTVd-infected tomato plants using the PSTVd genome sequence.","authors":"Jianqiang Sun, Yosuke Matsushita","doi":"10.1111/mpp.13469","DOIUrl":"10.1111/mpp.13469","url":null,"abstract":"<p><p>Viroids, one of the smallest known infectious agents, induce symptoms of varying severity, ranging from latent to severe, based on the combination of viroid isolates and host plant species. Because viroids are transmissible between plant species, asymptomatic viroid-infected plants may serve as latent sources of infection for other species that could exhibit severe symptoms, occasionally leading to agricultural and economic losses. Therefore, predicting the symptoms induced by viroids in host plants without biological experiments could remarkably enhance control measures against viroid damage. Here, we developed an algorithm using unsupervised machine learning to predict the severity of disease symptoms caused by viroids (e.g., potato spindle tuber viroid; PSTVd) in host plants (e.g., tomato). This algorithm, mimicking the RNA silencing mechanism thought to be linked to viroid pathogenicity, requires only the genome sequences of the viroids and host plants. It involves three steps: alignment of synthetic short sequences of the viroids to the host plant genome, calculation of the alignment coverage, and clustering of the viroids based on coverage using UMAP and DBSCAN. Validation through inoculation experiments confirmed the effectiveness of the algorithm in predicting the severity of disease symptoms induced by viroids. As the algorithm only requires the genome sequence data, it may be applied to any viroid and plant combination. These findings underscore a correlation between viroid pathogenicity and the genome sequences of viroid isolates and host plants, potentially aiding in the prevention of viroid outbreaks and the breeding of viroid-resistant crops.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13469"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism. 根结线虫效应子MiEFF12以宿主ER质量控制系统为靶标,抑制免疫反应,实现寄生。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-07-01 DOI: 10.1111/mpp.13491
Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin
{"title":"The root-knot nematode effector MiEFF12 targets the host ER quality control system to suppress immune responses and allow parasitism.","authors":"Salomé Soulé, Kaiwei Huang, Karine Mulet, Joffrey Mejias, Jérémie Bazin, Nhat My Truong, Junior Lusu Kika, Stéphanie Jaubert, Pierre Abad, Jianlong Zhao, Bruno Favery, Michaël Quentin","doi":"10.1111/mpp.13491","DOIUrl":"10.1111/mpp.13491","url":null,"abstract":"<p><p>Root-knot nematodes (RKNs) are microscopic parasitic worms able to infest the roots of thousands of plant species, causing massive crop yield losses worldwide. They evade the plant's immune system and manipulate plant cell physiology and metabolism to transform a few root cells into giant cells, which serve as feeding sites for the nematode. RKN parasitism is facilitated by the secretion in planta of effector molecules, mostly proteins that hijack host cellular processes. We describe here a conserved RKN-specific effector, effector 12 (EFF12), that is synthesized exclusively in the oesophageal glands of the nematode, and we demonstrate its function in parasitism. In the plant, MiEFF12 localizes to the endoplasmic reticulum (ER). A combination of RNA-sequencing analysis and immunity-suppression bioassays revealed the contribution of MiEFF12 to the modulation of host immunity. Yeast two-hybrid, split luciferase and co-immunoprecipitation approaches identified an essential component of the ER quality control system, the Solanum lycopersicum plant bap-like (PBL), and basic leucine zipper 60 (BZIP60) proteins as host targets of MiEFF12. Finally, silencing the PBL genes in Nicotiana benthamiana decreased susceptibility to Meloidogyne incognita infection. Our results suggest that EFF12 manipulates PBL function to modify plant immune responses to allow parasitism.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13491"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum. 单端孢霉烯霉菌毒素脱氧雪腐镰刀菌醇(deoxynivalenol)在禾谷镰刀菌的小麦组织定殖过程中促进了细胞间的侵染。
IF 4.9 1区 农林科学
Molecular plant pathology Pub Date : 2024-06-01 DOI: 10.1111/mpp.13485
Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack
{"title":"The trichothecene mycotoxin deoxynivalenol facilitates cell-to-cell invasion during wheat-tissue colonization by Fusarium graminearum.","authors":"Victoria J Armer, Martin Urban, Tom Ashfield, Michael J Deeks, Kim E Hammond-Kosack","doi":"10.1111/mpp.13485","DOIUrl":"10.1111/mpp.13485","url":null,"abstract":"<p><p>Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13485"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana. 一种来自霉菌的新型木聚糖酶会引发烟草中的植物免疫反应。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-06-01 DOI: 10.1111/mpp.13488
Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye
{"title":"A novel xylanase from a myxobacterium triggers a plant immune response in Nicotiana benthamiana.","authors":"Yuqiang Zhao, Kun Yang, Yanxin Wang, Xu Li, Chengyao Xia, Yan Huang, Zhoukun Li, Cancan Zhu, Zhongli Cui, Xianfeng Ye","doi":"10.1111/mpp.13488","DOIUrl":"10.1111/mpp.13488","url":null,"abstract":"<p><p>Xylanases derived from fungi, including phytopathogenic and nonpathogenic fungi, are commonly known to trigger plant immune responses. However, there is limited research on the ability of bacterial-derived xylanases to trigger plant immunity. Here, a novel xylanase named CcXyn was identified from the myxobacterium Cystobacter sp. 0969, which displays broad-spectrum activity against both phytopathogenic fungi and bacteria. CcXyn belongs to the glycoside hydrolases (GH) 11 family and shares a sequence identity of approximately 32.0%-45.0% with fungal xylanases known to trigger plant immune responses. Treatment of Nicotiana benthamiana with purified CcXyn resulted in the induction of hypersensitive response (HR) and defence responses, such as the production of reactive oxygen species (ROS) and upregulation of defence gene expression, ultimately enhancing the resistance of N. benthamiana to Phytophthora nicotianae. These findings indicated that CcXyn functions as a microbe-associated molecular pattern (MAMP) elicitor for plant immune responses, independent of its enzymatic activity. Similar to fungal xylanases, CcXyn was recognized by the NbRXEGL1 receptor on the cell membrane of N. benthamiana. Downstream signalling was shown to be independent of the BAK1 and SOBIR1 co-receptors, indicating the involvement of other co-receptors in signal transduction following CcXyn recognition in N. benthamiana. Moreover, xylanases from other myxobacteria also demonstrated the capacity to trigger plant immune responses in N. benthamiana, indicating that xylanases in myxobacteria are ubiquitous in triggering plant immune functions. This study expands the understanding of xylanases with plant immune response-inducing properties and provides a theoretical basis for potential applications of myxobacteria in biocontrol strategies against phytopathogens.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13488"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1. F-box 蛋白 OsFBX156 通过介导 OsHSP71.1 的泛素依赖性降解,积极调控水稻对稻瘟病真菌 Magnaporthe oryzae 的防御能力。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-06-01 DOI: 10.1111/mpp.13459
Yudan Zhao, Xionghui Zhong, Guojuan Xu, Xiaoying Zhu, Yanlong Shi, Minghao Liu, Ruyi Wang, Houxiang Kang, Xiaoman You, Yuese Ning, Guo-Liang Wang, Xuli Wang
{"title":"The F-box protein OsFBX156 positively regulates rice defence against the blast fungus Magnaporthe oryzae by mediating ubiquitination-dependent degradation of OsHSP71.1.","authors":"Yudan Zhao, Xionghui Zhong, Guojuan Xu, Xiaoying Zhu, Yanlong Shi, Minghao Liu, Ruyi Wang, Houxiang Kang, Xiaoman You, Yuese Ning, Guo-Liang Wang, Xuli Wang","doi":"10.1111/mpp.13459","DOIUrl":"10.1111/mpp.13459","url":null,"abstract":"<p><p>F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13459"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen. 一种与 MYB 相关的转录因子调节一种卵菌病原体中效应基因的表达。
IF 4.9 1区 农林科学
Molecular plant pathology Pub Date : 2024-06-01 DOI: 10.1111/mpp.13468
Hui Qian, Long Lin, Zhichao Zhang, Xinyi Gu, Danyu Shen, Zhiyuan Yin, Wenwu Ye, Daolong Dou, Yuanchao Wang
{"title":"A MYB-related transcription factor regulates effector gene expression in an oomycete pathogen.","authors":"Hui Qian, Long Lin, Zhichao Zhang, Xinyi Gu, Danyu Shen, Zhiyuan Yin, Wenwu Ye, Daolong Dou, Yuanchao Wang","doi":"10.1111/mpp.13468","DOIUrl":"10.1111/mpp.13468","url":null,"abstract":"<p><p>Phytophthora pathogens possess hundreds of effector genes that exhibit diverse expression patterns during infection, yet how the expression of effector genes is precisely regulated remains largely elusive. Previous studies have identified a few potential conserved transcription factor binding sites (TFBSs) in the promoters of Phytophthora effector genes. Here, we report a MYB-related protein, PsMyb37, in Phytophthora sojae, the major causal agent of root and stem rot in soybean. Yeast one-hybrid and electrophoretic mobility shift assays showed that PsMyb37 binds to the TACATGTA motif, the most prevalent TFBS in effector gene promoters. The knockout mutant of PsMyb37 exhibited significantly reduced virulence on soybean and was more sensitive to oxidative stress. Consistently, transcriptome analysis showed that numerous effector genes associated with suppressing plant immunity or scavenging reactive oxygen species were down-regulated in the PsMyb37 knockout mutant during infection compared to the wild-type P. sojae. Several promoters of effector genes were confirmed to drive the expression of luciferase in a reporter assay. These results demonstrate that a MYB-related transcription factor contributes to the expression of effector genes in P. sojae.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13468"},"PeriodicalIF":4.9,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141161991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera. HCPro 两个氨基酸的适应性替代改变了其功能特性,从而分别提高了潜病毒嵌合体的毒力。
IF 4.8 1区 农林科学
Molecular plant pathology Pub Date : 2024-06-01 DOI: 10.1111/mpp.13487
Hao Sun, Malgorzata Ciska, Mongia Makki, Francisco Tenllado, Tomás Canto
{"title":"Adaptive substitutions at two amino acids of HCPro modify its functional properties to separately increase the virulence of a potyviral chimera.","authors":"Hao Sun, Malgorzata Ciska, Mongia Makki, Francisco Tenllado, Tomás Canto","doi":"10.1111/mpp.13487","DOIUrl":"10.1111/mpp.13487","url":null,"abstract":"<p><p>We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 6","pages":"e13487"},"PeriodicalIF":4.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178974/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信