{"title":"Phytophthora infestans效应子Pi05910抑制并破坏宿主乙醇氧化酶StGOX4的稳定性,从而促进植物的易感性。","authors":"Peiling Zhang, Jinyang Li, Xiuhong Gou, Lin Zhu, Yang Yang, Yilin Li, Yingqi Zhang, Liwen Ding, Assiya Ansabayeva, Yuling Meng, Weixing Shan","doi":"10.1111/mpp.70021","DOIUrl":null,"url":null,"abstract":"<p><p>Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530570/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility.\",\"authors\":\"Peiling Zhang, Jinyang Li, Xiuhong Gou, Lin Zhu, Yang Yang, Yilin Li, Yingqi Zhang, Liwen Ding, Assiya Ansabayeva, Yuling Meng, Weixing Shan\",\"doi\":\"10.1111/mpp.70021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.</p>\",\"PeriodicalId\":18763,\"journal\":{\"name\":\"Molecular plant pathology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530570/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular plant pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/mpp.70021\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70021","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
The Phytophthora infestans effector Pi05910 suppresses and destabilizes host glycolate oxidase StGOX4 to promote plant susceptibility.
Phytophthora infestans is a notorious oomycete pathogen that causes potato late blight. It secretes numerous effector proteins to manipulate host immunity. Understanding mechanisms underlying their host cell manipulation is crucial for developing disease resistance strategies. Here, we report that the conserved RXLR effector Pi05910 of P. infestans is a genotype-specific avirulence elicitor on potato variety Longshu 12 and contributes virulence by suppressing and destabilizing host glycolate oxidase StGOX4. By performing co-immunoprecipitation, yeast-two-hybrid assays, luciferase complementation imaging, bimolecular fluorescence complementation and isothermal titration calorimetry assays, we identified and confirmed potato StGOX4 as a target of Pi05910. Further analysis revealed that StGOX4 and its homologue NbGOX4 are positive immune regulators against P. infestans, as indicated by infection assays on potato and Nicotiana benthamiana overexpressing StGOX4 and TRV-NbGOX4 plants. StGOX4-mediated disease resistance involves enhanced reactive oxygen species accumulation and activated the salicylic acid signalling pathway. Pi05910 binding inhibited enzymatic activity and destabilized StGOX4. Furthermore, mutagenesis analyses indicated that the 25th residue (tyrosine, Y25) of StGOX4 mediates Pi05910 binding and is required for its immune function. Our results revealed that the core RXLR effector of P. infestans Pi05910 suppresses plant immunity by targeting StGOX4, which results in decreased enzymatic activity and protein accumulation, leading to enhanced plant susceptibility.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.