Beatrix M Ueberheide, Sahana Mollah, Benjamin A Garcia
{"title":"On the Hunt for the Histone Code.","authors":"Beatrix M Ueberheide, Sahana Mollah, Benjamin A Garcia","doi":"10.1016/j.mcpro.2024.100873","DOIUrl":"10.1016/j.mcpro.2024.100873","url":null,"abstract":"<p><p>Our genome is not made of naked DNA but a fiber (chromatin) composed of DNA and proteins packaged into our chromosomes. The basic building block of chromatin is the nucleosome, which has two copies of each of the proteins called histones (H2A, H2B, H3, and H4) wrapped by 146 base pairs of DNA. Regions of our genetic material are found between the more open (euchromatin) and more compact (heterochromatin) regions of the genome that can be variably accessible to the underlying genes. Furthermore, post-translational modifications (PTMs) on histones, such as on H3, are critical for regulating chromatin accessibility and gene expression. While site-specific antibodies were the tool of choice for histone PTM analysis in the early days (pre-2000s), enter Don Hunt changing the histone PTM field forever. Don's clever thinking brought new innovative mass spectrometry-based approaches to the epigenetics field. His lab's effort led to the discovery of many new histone modifications and methods to facilitate the detection and quantification of histone PTMs, which are still considered state of the art in the proteomics field today. Due to Don's pioneering work in this area, many labs have been able to jump into the epigenetics field and \"Hunt\" down their own histone targets. A walkthrough of those early histone years in the Hunt Lab is described by three of us who were fortunate enough to be at the right place, at the right time.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100873"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanobodies: From High-Throughput Identification to Therapeutic Development.","authors":"Peter C Fridy, Michael P Rout, Natalia E Ketaren","doi":"10.1016/j.mcpro.2024.100865","DOIUrl":"10.1016/j.mcpro.2024.100865","url":null,"abstract":"<p><p>The camelid single-domain antibody fragment, commonly referred to as a nanobody, achieves the targeting power of conventional monoclonal antibodies (mAbs) at only a fraction of their size. Isolated from camelid species (including llamas, alpacas, and camels), their small size at ∼15 kDa, low structural complexity, and high stability compared with conventional antibodies have propelled nanobody technology into the limelight of biologic development. Nanobodies are proving themselves to be a potent complement to traditional mAb therapies, showing success in the treatment of, for example, autoimmune diseases and cancer, and more recently as therapeutic options to treat infectious diseases caused by rapidly evolving biological targets such as the SARS-CoV-2 virus. This review highlights the benefits of applying a proteomic approach to identify diverse nanobody sequences against a single antigen. This proteomic approach coupled with conventional yeast/phage display methods enables the production of highly diverse repertoires of nanobodies able to bind the vast epitope landscape of an antigen, with epitope sampling surpassing that of mAbs. Additionally, we aim to highlight recent findings illuminating the structural attributes of nanobodies that make them particularly amenable to comprehensive antigen sampling and to synergistic activity-underscoring the powerful advantage of acquiring a large, diverse nanobody repertoire against a single antigen. Lastly, we highlight the efforts being made in the clinical development of nanobodies, which have great potential as powerful diagnostic reagents and treatment options, especially when targeting infectious disease agents.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100865"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahood Al-Eidan, Ben Draper, Siyuan Wang, Brandon Coke, Paul Skipp, Yihua Wang, Rob M Ewing
{"title":"Knockdown Proteomics Reveals USP7 as a Regulator of Cell-Cell Adhesion in Colorectal Cancer via AJUBA.","authors":"Ahood Al-Eidan, Ben Draper, Siyuan Wang, Brandon Coke, Paul Skipp, Yihua Wang, Rob M Ewing","doi":"10.1016/j.mcpro.2024.100878","DOIUrl":"10.1016/j.mcpro.2024.100878","url":null,"abstract":"<p><p>Ubiquitin-specific protease 7 (USP7) is implicated in many cancers including colorectal cancer in which it regulates cellular pathways such as Wnt signaling and the P53-MDM2 pathway. With the discovery of small-molecule inhibitors, USP7 has also become a promising target for cancer therapy and therefore systematically identifying USP7 deubiquitinase interaction partners and substrates has become an important goal. In this study, we selected a colorectal cancer cell model that is highly dependent on USP7 and in which USP7 knockdown significantly inhibited colorectal cancer cell viability, colony formation, and cell-cell adhesion. We then used inducible knockdown of USP7 followed by LC-MS/MS to quantify USP7-dependent proteins. We identified the Ajuba LIM domain protein as an interacting partner of USP7 through co-IP, its substantially reduced protein levels in response to USP7 knockdown, and its sensitivity to the specific USP7 inhibitor FT671. The Ajuba protein has been shown to have oncogenic functions in colorectal and other tumors, including regulation of cell-cell adhesion. We show that both knockdown of USP7 or Ajuba results in a substantial reduction of cell-cell adhesion, with concomitant effects on other proteins associated with adherens junctions. Our findings underlie the role of USP7 in colorectal cancer through its protein interaction networks and show that the Ajuba protein is a component of USP7 protein networks present in colorectal cancer.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100878"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie Locard-Paulet, Nadezhda T Doncheva, John H Morris, Lars Juhl Jensen
{"title":"Functional Analysis of MS-Based Proteomics Data: From Protein Groups to Networks.","authors":"Marie Locard-Paulet, Nadezhda T Doncheva, John H Morris, Lars Juhl Jensen","doi":"10.1016/j.mcpro.2024.100871","DOIUrl":"10.1016/j.mcpro.2024.100871","url":null,"abstract":"<p><p>Mass spectrometry-based proteomics allows the quantification of thousands of proteins, protein variants, and their modifications, in many biological samples. These are derived from the measurement of peptide relative quantities, and it is not always possible to distinguish proteins with similar sequences due to the absence of protein-specific peptides. In such cases, peptide signals are reported in protein groups that can correspond to several genes. Here, we show that multi-gene protein groups have a limited impact on GO-term enrichment, but selecting only one gene per group affects network analysis. We thus present the Cytoscape app Proteo Visualizer (https://apps.cytoscape.org/apps/ProteoVisualizer) that is designed for retrieving protein interaction networks from STRING using protein groups as input and thus allows visualization and network analysis of bottom-up MS-based proteomics data sets.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100871"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kohei Kume, Midori Iida, Takeshi Iwaya, Akiko Yashima-Abo, Yuka Koizumi, Akari Endo, Kaitlin Wade, Hayato Hiraki, Valerie Calvert, Julia Wulfkuhle, Virginia Espina, Doris R Siwak, Yiling Lu, Kazuhiro Takemoto, Yutaka Suzuki, Yasushi Sasaki, Takashi Tokino, Emanuel Petricoin, Lance A Liotta, Gordon B Mills, Satoshi S Nishizuka
{"title":"Targeted Dynamic Phospho-Proteogenomic Analysis of Gastric Cancer Cells Suggests Host Immunity Provides Survival Benefit.","authors":"Kohei Kume, Midori Iida, Takeshi Iwaya, Akiko Yashima-Abo, Yuka Koizumi, Akari Endo, Kaitlin Wade, Hayato Hiraki, Valerie Calvert, Julia Wulfkuhle, Virginia Espina, Doris R Siwak, Yiling Lu, Kazuhiro Takemoto, Yutaka Suzuki, Yasushi Sasaki, Takashi Tokino, Emanuel Petricoin, Lance A Liotta, Gordon B Mills, Satoshi S Nishizuka","doi":"10.1016/j.mcpro.2024.100870","DOIUrl":"10.1016/j.mcpro.2024.100870","url":null,"abstract":"<p><p>Despite of massive emergence of molecular targeting drugs, the mainstay of advanced gastric cancer (GC) therapy is DNA-damaging drugs. Using a reverse-phase protein array-based proteogenomic analysis of a panel of 8 GC cell lines, we identified genetic alterations and signaling pathways, potentially associated with resistance to DNA-damaging drugs, including 5-fluorouracil (5FU), cisplatin, and etoposide. Resistance to cisplatin and etoposide, but not 5FU, was negatively associated with global copy number loss, vimentin expression, and caspase activity, which are considered hallmarks of previously established EMT subtype. The segregation of 19,392 protein expression time courses by sensitive and resistant cell lines for the drugs tested revealed that 5FU-resistant cell lines had lower changes in global protein dynamics, suggesting their robust protein level regulation, than their sensitive counterparts, whereas the cell lines that are resistant to other drugs showed increased protein dynamics in response to each drug. Despite faint global protein dynamics, 5FU-resistant cell lines showed increased signal transducer and activator of transcription 1 phosphorylation and PD-L1 expression in response to 5FU. In publicly available cohort data, expression of signal transducer and activator of transcription 1 and NFκB target genes induced by proinflammatory cytokines was associated with prolonged survival in GC. In our validation cohort, total lymphocyte count, rather than PD-L1 positivity, predicted a better relapse-free survival rate in GC patients with 5FU-based adjuvant chemotherapy than those with surgery alone. Moreover, total lymphocyte count<sup>+</sup> patients who had no survival benefit from adjuvant chemotherapy were discriminated by expression of IκBα, a potent negative regulator of NFκB. Collectively, our results suggest that 5FU resistance observed in cell lines may be overcome by host immunity or by combination therapy with immune checkpoint blockade.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100870"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening of Cancer-Specific Biomarkers for Hepatitis B-Related Hepatocellular Carcinoma Based on a Proteome Microarray.","authors":"Wudi Hao, Danyang Zhao, Yuan Meng, Mei Yang, Meichen Ma, Jingwen Hu, Jianhua Liu, Xiaosong Qin","doi":"10.1016/j.mcpro.2024.100872","DOIUrl":"10.1016/j.mcpro.2024.100872","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is associated with one of the highest mortality rates among cancers, rendering its early diagnosis clinically invaluable. Serum biomarkers, specifically alpha-fetoprotein (AFP), represent the most promising and widely used diagnostic biomarkers for HCC. However, its detection rate is low in the early stages of HCC progression, and distinguishing specific false positives for other liver-related diseases, such as cirrhosis and acute hepatitis, remains challenging. Therefore, this study was conducted to identify biomarkers for hepatitis B (HBV)-related liver diseases by screening differentially expressed autoantibodies against tumor-associated antigens (TAAbs). We designed a large-scale multistage investigation, encompassing initial screening, HCC-focused, and ELISA validation cohorts to identify potential TAAbs in HBV-related liver diseases, spanning from healthy control (HC) individuals to patients with chronic hepatitis B (CHB), hepatitis B-related cirrhosis (HBC), and HCC, using protein microarray technology. The differential biological characteristics of TAAbs were analyzed using bioinformatics analysis. Validation of tumor-specific biomarkers for HCC was performed using ELISA. In the screening cohort, 547 candidate TAAbs were identified in the HCC group compared to those in the HC group. In the HCC-focused cohort, 64, 61, and 65 candidate TAAbs were identified in the CHB, HBC, and HCC groups, respectively, compared to those in the HC group. Thirty-four proteins exhibited continuously elevated expression from HCs to patients with CHB, HBC, and HCC. Among these, nine were identified as cancer-specific proteins. In the validation cohort, UBE2Z, CNOT3, and EID3 were correlated with liver function indicators in patients with hepatitis B-related HCC. Overall, UBE2Z, CNOT3, and EID3 emerged as cancer-specific biomarkers for HBV-related liver disease, providing a scientific basis for clinical application.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100872"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Austin Gluth, Xiaolu Li, Marina A Gritsenko, Matthew J Gaffrey, Doo Nam Kim, Priscila M Lalli, Rosalie K Chu, Nicholas J Day, Tyler J Sagendorf, Matthew E Monroe, Song Feng, Tao Liu, Bin Yang, Wei-Jun Qian, Tong Zhang
{"title":"Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-Treated Pancreatic Beta Cells.","authors":"Austin Gluth, Xiaolu Li, Marina A Gritsenko, Matthew J Gaffrey, Doo Nam Kim, Priscila M Lalli, Rosalie K Chu, Nicholas J Day, Tyler J Sagendorf, Matthew E Monroe, Song Feng, Tao Liu, Bin Yang, Wei-Jun Qian, Tong Zhang","doi":"10.1016/j.mcpro.2024.100881","DOIUrl":"10.1016/j.mcpro.2024.100881","url":null,"abstract":"<p><p>Studying regulation of protein function at a systems level necessitates an understanding of the interplay among diverse posttranslational modifications (PTMs). A variety of proteomics sample processing workflows are currently used to study specific PTMs but rarely characterize multiple types of PTMs from the same sample inputs. Method incompatibilities and laborious sample preparation steps complicate large-scale physiological investigations and can lead to variations in results. The single-pot, solid-phase-enhanced sample preparation (SP3) method for sample cleanup is compatible with different lysis buffers and amenable to automation, making it attractive for high-throughput multi-PTM profiling. Herein, we describe an integrative SP3 workflow for multiplexed quantification of protein abundance, cysteine thiol oxidation, phosphorylation, and acetylation. The broad applicability of this approach is demonstrated using cell and tissue samples, and its utility for studying interacting regulatory networks is highlighted in a time-course experiment of cytokine-treated β-cells. We observed a swift response in the global regulation of protein abundances consistent with rapid activation of JAK-STAT and NF-κB signaling pathways. Regulators of these pathways as well as proteins involved in their target processes displayed multi-PTM dynamics indicative of complex cellular response stages: acute, adaptation, and chronic (prolonged stress). PARP14, a negative regulator of JAK-STAT, had multiple colocalized PTMs that may be involved in intraprotein regulatory crosstalk. Our workflow provides a high-throughput platform that can profile multi-PTMomes from the same sample set, which is valuable in unraveling the functional roles of PTMs and their co-regulation.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100881"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700301/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincent Albrecht, Johannes Müller-Reif, Thierry M Nordmann, Andreas Mund, Lisa Schweizer, Philipp E Geyer, Lili Niu, Juanjuan Wang, Frederik Post, Marc Oeller, Andreas Metousis, Annelaura Bach Nielsen, Medini Steger, Nicolai J Wewer Albrechtsen, Matthias Mann
{"title":"Bridging the Gap From Proteomics Technology to Clinical Application: Highlights From the 68th Benzon Foundation Symposium.","authors":"Vincent Albrecht, Johannes Müller-Reif, Thierry M Nordmann, Andreas Mund, Lisa Schweizer, Philipp E Geyer, Lili Niu, Juanjuan Wang, Frederik Post, Marc Oeller, Andreas Metousis, Annelaura Bach Nielsen, Medini Steger, Nicolai J Wewer Albrechtsen, Matthias Mann","doi":"10.1016/j.mcpro.2024.100877","DOIUrl":"10.1016/j.mcpro.2024.100877","url":null,"abstract":"<p><p>The 68th Benzon Foundation Symposium brought together leading experts to explore the integration of mass spectrometry-based proteomics and artificial intelligence to revolutionize personalized medicine. This report highlights key discussions on recent technological advances in mass spectrometry-based proteomics, including improvements in sensitivity, throughput, and data analysis. Particular emphasis was placed on plasma proteomics and its potential for biomarker discovery across various diseases. The symposium addressed critical challenges in translating proteomic discoveries to clinical practice, including standardization, regulatory considerations, and the need for robust \"business cases\" to motivate adoption. Promising applications were presented in areas such as cancer diagnostics, neurodegenerative diseases, and cardiovascular health. The integration of proteomics with other omics technologies and imaging methods was explored, showcasing the power of multimodal approaches in understanding complex biological systems. Artificial intelligence emerged as a crucial tool for the acquisition of large-scale proteomic datasets, extracting meaningful insights, and enhancing clinical decision-making. By fostering dialog between academic researchers, industry leaders in proteomics technology, and clinicians, the symposium illuminated potential pathways for proteomics to transform personalized medicine, advancing the cause of more precise diagnostics and targeted therapies.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100877"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652764/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142623998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lissa C Anderson, Dina L Bai, Greg T Blakney, David S Butcher, Larry Reser, Jeffrey Shabanowitz
{"title":"The Hunt Lab Guide to De Novo Peptide Sequence Analysis by Tandem Mass Spectrometry.","authors":"Lissa C Anderson, Dina L Bai, Greg T Blakney, David S Butcher, Larry Reser, Jeffrey Shabanowitz","doi":"10.1016/j.mcpro.2024.100875","DOIUrl":"10.1016/j.mcpro.2024.100875","url":null,"abstract":"<p><p>Donald Hunt has made seminal contributions to the fields of proteomics, immunology, epigenetics, and glycobiology. The foundation of every important work to come out of the Hunt Laboratory is de novo peptide sequencing. For decades, he taught hundreds of students, postdocs, engineers, and scientists to directly interpret mass spectral data. To honor his legacy and ensure that the art of de novo sequencing is not lost, we have adapted his teaching materials into \"The Hunt Lab Guide to De Novo Peptide Sequence Analysis by Tandem Mass Spectrometry\". In addition to the de novo sequencing tutorials, we present two freely available software tools that facilitate manual interpretation of mass spectra and validation of search results. The first, \"Hunt Lab Peptide Fragment Calculator\", calculates precursor and fragment mass-to-charge ratios for any peptide. The second program, \"Predator Protein Fragment Calculator\", was inspired in part by the fragment calculator developed in the Hunt Lab. Its capabilities are enhanced to facilitate interpretation of mass spectral data derived from intact proteins. We hope that the combination of these educational tools will continue to benefit students and researchers by empowering them to interpret data on their own.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100875"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Jane Gale, George C Stafford, Howard R Morris, Charles N McEwen
{"title":"Early Days in the Hunt Laboratory at UVA, 1969 to 1980.","authors":"P Jane Gale, George C Stafford, Howard R Morris, Charles N McEwen","doi":"10.1016/j.mcpro.2024.100874","DOIUrl":"10.1016/j.mcpro.2024.100874","url":null,"abstract":"<p><p>Arriving at the University of Virginia in the autumn of 1969, Donald Hunt began his 50+ year career in academics with the study of organometallic chemistry, on which he had done his PhD thesis work, and mass spectrometry, to which he was introduced while a postdoc in Klaus Biemann's laboratory at the Massachusetts Institute of Technology. In the 1970s, Hunt's lab pioneered the use of negative chemical ionization (CI) to enhance sensitivity for studying organic molecules, developed a system for simultaneously obtaining positive and negative CI spectra to augment structure elucidation, and built a prototype triple quadrupole instrument so effective at collisional dissociation that its commercial counterpart became the analytical instrument of choice for mixture analysis for the next decade and beyond. Foreseeing that the future lay in the analysis of biological molecules, by the end of the decade Hunt shifted his focus to peptides. The analysis of protein fragments had suddenly become more accessible thanks to the advent of the triple quadrupole and Barber's introduction of fast atom bombardment. As the 1980s began and Hunt and his team sought to pursue larger and larger pieces of proteins, his attention turned to the development of mass spectrometers with greater mass range. While recounting their memories of these events, several of Hunt's students and colleagues pay tribute to his support for them as individuals, as well as to his infectious enthusiasm for scientific endeavors that he so generously shared.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100874"},"PeriodicalIF":6.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}