{"title":"Metal ion-enhanced ZIC-cHILIC StageTip for N-Glycoproteomic and Phosphoproteomic Profiling in EGFR-mutated Lung Cancer Cells.","authors":"Yi-Ju Chen, Yan-Lin Chen, Kun-Hao Chang, Hsiang-Chun Cheng, Chiao-Chun Chang, Yu-Ju Chen","doi":"10.1016/j.mcpro.2025.100957","DOIUrl":null,"url":null,"abstract":"<p><p>Surface glycosylation and intracellular phosphorylation regulates the cell-cell communication and signaling cascades. Due to complex glycosylation and dynamic phosphorylation, exploring their interplay remains technically challenging. In this study, we reported a tandem ZIC-cHILIC StageTip strategy for streamlined and simultaneous (sialo)glycoproteomic and phosphoproteomic profiling. We first demonstrated that Fe ions expand the utility of ZIC-cHILIC strategy to phosphoproteomic analysis with greatly enhanced >4-fold coverage and high specificity for mono-phosphopeptides (95%). The Fe-ZIC-cHILIC tandem tips, leveraging stepwise fractionation, enable large-scale coverage of 10,536 glycopeptides, including highly confident 4,285 sialoglycopeptpides, and 11,329 phosphopeptides in a single cell type. To study the mechanism underlying the tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC), application of the strategy to 4 NSCLC cells harboring different EGFR mutations reveals significantly differential 1,559 glycopeptides and 1,949 phosphopeptides either in EGFR mutation or TKI resistant cells. Without protein immunoprecipitation, the approach identified FDA-approved drug targets, such as EGFR, ERBB2, MET, and integrin family members. Most prominent alterations were observed in EGFR (auto-phosphorylation Y1197 and 10 bi- and triantennary fucosyl-sialo glycans at N603), downstream PI3K-Akt pathway (ERBB2-T1240, MET-S990/T992, AKT-S124/S126) and integrin family (sialo-fucosyl glycans), suggesting site-specific alteration between N-glycosylation and phosphorylation interplay in the TKI resistant L858R-T790M mutant NSCLC cells. The glycoproteomic and phosphoproteomic landscape may help to unravel the complex modification alterations underlying the resistant mechanism, offering insights for improving therapeutic strategies and patient outcomes.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100957"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100957","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface glycosylation and intracellular phosphorylation regulates the cell-cell communication and signaling cascades. Due to complex glycosylation and dynamic phosphorylation, exploring their interplay remains technically challenging. In this study, we reported a tandem ZIC-cHILIC StageTip strategy for streamlined and simultaneous (sialo)glycoproteomic and phosphoproteomic profiling. We first demonstrated that Fe ions expand the utility of ZIC-cHILIC strategy to phosphoproteomic analysis with greatly enhanced >4-fold coverage and high specificity for mono-phosphopeptides (95%). The Fe-ZIC-cHILIC tandem tips, leveraging stepwise fractionation, enable large-scale coverage of 10,536 glycopeptides, including highly confident 4,285 sialoglycopeptpides, and 11,329 phosphopeptides in a single cell type. To study the mechanism underlying the tyrosine kinase inhibitor (TKI) resistance in non-small cell lung cancer (NSCLC), application of the strategy to 4 NSCLC cells harboring different EGFR mutations reveals significantly differential 1,559 glycopeptides and 1,949 phosphopeptides either in EGFR mutation or TKI resistant cells. Without protein immunoprecipitation, the approach identified FDA-approved drug targets, such as EGFR, ERBB2, MET, and integrin family members. Most prominent alterations were observed in EGFR (auto-phosphorylation Y1197 and 10 bi- and triantennary fucosyl-sialo glycans at N603), downstream PI3K-Akt pathway (ERBB2-T1240, MET-S990/T992, AKT-S124/S126) and integrin family (sialo-fucosyl glycans), suggesting site-specific alteration between N-glycosylation and phosphorylation interplay in the TKI resistant L858R-T790M mutant NSCLC cells. The glycoproteomic and phosphoproteomic landscape may help to unravel the complex modification alterations underlying the resistant mechanism, offering insights for improving therapeutic strategies and patient outcomes.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes