{"title":"Predators in the Dark: Metabarcoding Reveals Arcellinida Communities Associated with Bat Guano, Endemic to Dinaric Karst in Croatia.","authors":"Ángel García-Bodelón, Najla Baković, Emilio Cano, Fernando Useros, Enrique Lara, Rubén González-Miguéns","doi":"10.1007/s00248-024-02483-z","DOIUrl":"10.1007/s00248-024-02483-z","url":null,"abstract":"<p><p>Karst caves, formed from the dissolution of soluble rocks, are characterized by the absence of photosynthetic activity and low levels of organic matter. Organisms evolve under these particular conditions, which causes high levels of endemic biodiversity in both macroorganism and microbes. Recent research has highlighted the presence of testate amoebae (Arcellinida) group in cave environments. This study investigates the diversity of Arcellinida in Dinaric karstic caves in Croatia, a global diversity hotspot, focusing on the influence of bat guano on community structure. Sediment samples were collected from two independent hydrosystems, and a metabarcoding approach was used to assess Arcellinida diversity at specific and intraspecific levels, using Arcellinid-specific primers to amplify the mitochondrial cytochrome oxidase subunit I (COI) region. Results reveal a significant impact of guano on both specific and intraspecific diversity of Arcellinida. Communities in guano-rich sites displayed higher diversity, abundance, and the presence of unique OTUs and genetic variants not observed in other habitats, highlighting the crucial role of bats as ecosystem engineers. In contrast, sites without guano hosted communities with low abundance and reduced biodiversity. These differences suggest the existence of guano-associated Arcellinida communities. This study provides new insights into the biodiversity of subterranean ecosystems and the ecological roles of Arcellinida in karstic environments.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"166"},"PeriodicalIF":3.3,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142932301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial EcologyPub Date : 2024-12-28DOI: 10.1007/s00248-024-02481-1
Maja Fluch, Erika Corretto, Heike Feldhaar, Hannes Schuler
{"title":"Seasonal Changes in the Gut Microbiota of Halyomorpha halys.","authors":"Maja Fluch, Erika Corretto, Heike Feldhaar, Hannes Schuler","doi":"10.1007/s00248-024-02481-1","DOIUrl":"10.1007/s00248-024-02481-1","url":null,"abstract":"<p><p>The gut microbiome plays an important role in insect evolution and ecology. Bacteria support the host's nutrition and defense and therefore play an important role in the fitness of the host. Halyomorpha halys is one of the most important invasive pest species in the world. Native to North-Eastern Asia, this Pentatomid bug has recently invaded North America and Europe, causing significant damage to agricultural production. Although an increasing number of studies investigated the biology of this pest species, little is known about the composition of its gut microbiota. Like many other Pentatomid species, H. halys harbors a primary symbiont called \"Candidatus Pantoea carbekii,\" which produces vitamins and essential amino acids for the host. However, information about the presence of other bacteria is currently lacking. Therefore, we investigated the gut microbiota of H. halys individuals, which were collected in the field across the year using a high-throughput 16S rRNA gene metabarcoding approach. Our results revealed 3309 different ASVs associated with H. halys, with Pantoea being the most abundant symbiont, present in almost all individuals. Additionally, many individuals harbor Commensalibacter, a genus of acetic acid bacterial symbionts. Besides these two predominant taxa, we show a high diversity of microorganisms associated with H. halys with seasonal fluctuations, highlighting a dynamic microbiota that might influence the biology of this species.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"164"},"PeriodicalIF":3.3,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11682014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial EcologyPub Date : 2024-12-26DOI: 10.1007/s00248-024-02479-9
Joseph Ulbrich, Nathaniel E Jobe, Daniel S Jones, Thomas L Kieft
{"title":"Cave Pools in Carlsbad Caverns National Park Contain Diverse Bacteriophage Communities and Novel Viral Sequences.","authors":"Joseph Ulbrich, Nathaniel E Jobe, Daniel S Jones, Thomas L Kieft","doi":"10.1007/s00248-024-02479-9","DOIUrl":"10.1007/s00248-024-02479-9","url":null,"abstract":"<p><p>Viruses are the most abundant biological entities on Earth, and they play a critical role in the environment and biosphere where they regulate microbial populations and contribute to nutrient cycling. Environmental viruses have been the most studied in the ocean, but viral investigations have now spread to other environments. Here, viral communities were characterized in four cave pools in Carlsbad Caverns National Park to test the hypotheses that (i) viral abundance is ten-fold higher than prokaryotic cell abundance in cavern pools, (ii) cavern pools contain novel viral sequences, and (iii) viral communities in pools from developed portions of the cave are distinct from those of pools in undeveloped parts of the same cave. The relationship between viral and microbial abundance was determined through direct epifluorescence microscopy counts. Viral metagenomes were constructed to examine viral diversity among pools, identify novel viruses, and characterize auxiliary metabolic genes (AMGs). Bacterial communities were characterized by 16S rRNA gene amplicon sequencing. Epifluorescence microscopy showed that the ratio of viral-like particles (VLPs) to microorganisms was approximately 22:1 across all sites. Viral communities from pools with higher tourist traffic were more similar to each other than to those from less visited pools, although surprisingly, viruses did not follow the same pattern as bacterial communities, which reflected pool geochemistry. Bacterial hosts predicted from viral sequences using iPHoP showed overlap with both rare and abundant genera and families in the 16S rRNA gene dataset. Gene-sharing network analysis revealed high viral diversity compared to a reference viral database as well as to other aquatic environments. AMG presence showed variation in metabolic potential among the four pools. Overall, Carlsbad Cavern harbors novel viruses with substantial diversity among pools within the same system, indicating that caves are likely an important repository for unexplored viromes.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"163"},"PeriodicalIF":3.3,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142896078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Microbial Diversity of Biological Moss Crust: Application in Saline-Alkali Soil Management.","authors":"Zhi-Bo Jiang, Hui Zhang, Jing-Jing Tian, Huan-Huan Guo, Le-Rui Zhou, Xiao-Li Ma","doi":"10.1007/s00248-024-02473-1","DOIUrl":"10.1007/s00248-024-02473-1","url":null,"abstract":"<p><p>Soil salinization poses a substantial threat to global food security, particularly under the influence of climate change, and is recognized as one of the most urgent challenges in land degradation. This study aims to elucidate the challenges associated with managing arid and semi-arid saline-alkali lands in China's Ningxia province and propose feasible solutions. To assess moss crust colonization, we measured changes in organic matter and chlorophyll levels. Additionally, we investigated the impact of an interlayer composed of Goji berry root bark using liquid chromatography-mass spectrometry analysis, biological enzyme activity analysis, and metagenomic sequencing. A total of 45 endophytes were isolated from the moss crust. The most significant colonization of moss crusts was observed when the Goji berry root bark was used as the interlayer, resulting in a significant increase in chlorophyll content. Several responses were identified as pivotal factors facilitating moss crust growth when the Goji berry root bark was used as the interlayer. In saline-alkali soil, the Goji berry root bark interlayer increased the activities of sucrase, urease, and alkaline phosphatase. Metagenomic data analysis revealed variations in the relative abundance of microorganisms at the phylum level, although these differences were not statistically significant. Evaluation of the impact of physical isolation and moss crust transplantation on the ecological restoration of saline-alkali soil using liquid chromatography-tandem mass spectrometry and metagenomic sequencing indicated that the Goji berry root bark as a physical isolation method promotes moss crust colonization in saline-alkali soil and increases soil organic matter and nutrient elements, offering valuable insights for the ecological management of saline-alkali land and serving as a reference for future research in this field.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"162"},"PeriodicalIF":3.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666625/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial EcologyPub Date : 2024-12-21DOI: 10.1007/s00248-024-02480-2
Matthew Grisnik, Donald M Walker
{"title":"Bat Cutaneous Microbial Assemblage Functional Redundancy Across a Host-Mediated Disturbance.","authors":"Matthew Grisnik, Donald M Walker","doi":"10.1007/s00248-024-02480-2","DOIUrl":"10.1007/s00248-024-02480-2","url":null,"abstract":"<p><p>Understanding the processes and factors that influence the structure of host-associated microbial assemblages has been a major area of research as these assemblages play a role in host defense against pathogens. Previous work has found that bacterial taxa within bat cutaneous microbial assemblages have antifungal capabilities against the emerging fungal pathogen, Pseudogymnoascus destructans. However, our understanding of natural fluctuations in these cutaneous microbial assemblages over time due to shifts in host habitat is lacking. The objective of this work was to understand how the taxonomic and functional bat cutaneous microbial assemblage responds to seasonal shifts in host habitat. We hypothesized that at the community level, there will be turnover in taxonomic structure but functional redundancy across seasons. On a finer scale, we hypothesized that there will be differences in the relative abundance of functional genes that code for select pathways across seasons. Results showed that, on a broad scale, the bat cutaneous microbial assemblage is seasonally taxonomically dynamic but functionally redundant. Additionally, although there was almost complete taxonomic turnover between winter and summer bat microbial assemblages, there was no difference in assemblage structure across winters. This functional redundancy was also observed at finer scales, with no differences in the abundance of genes within pathways of hypothesized importance across seasons or winters. Taken together, results suggest species sorting mechanisms correlated with shifts in host habitat use, drive taxonomic but not functional host-associated cutaneous microbial community assembly.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"161"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial EcologyPub Date : 2024-12-21DOI: 10.1007/s00248-024-02478-w
Gyeong Hak Han, Jihyun Yu, Min Joo Kang, Mi-Jeong Park, Choong Hwan Noh, Yun Jae Kim, Kae Kyoung Kwon
{"title":"Correction to: Phylosymbiosis in Seven Wild Fish Species Collected Off the Southern Coast of Korea: Skin Microbiome Most Strongly Reflects Evolutionary Pressures.","authors":"Gyeong Hak Han, Jihyun Yu, Min Joo Kang, Mi-Jeong Park, Choong Hwan Noh, Yun Jae Kim, Kae Kyoung Kwon","doi":"10.1007/s00248-024-02478-w","DOIUrl":"10.1007/s00248-024-02478-w","url":null,"abstract":"","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"159"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663146/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling Diversity and Function: Venom-Associated Microbes in Two Spiders, Heteropoda venatoria and Chilobrachys guangxiensis.","authors":"Likun Zhao, Shanfeng Zhang, Jingchen Li, Chao Zhang, Ruoyi Xiao, Xinyuan Bai, Hongkang Xu, Feng Zhang","doi":"10.1007/s00248-024-02476-y","DOIUrl":"10.1007/s00248-024-02476-y","url":null,"abstract":"<p><p>Spiders are natural predators of agricultural pests, primarily due to the potent venom in their venom glands. Spider venom is compositionally complex and holds research value. This study analyzes the diversity of symbiotic bacteria in spider venom glands and venom, as well as the biological activity of culturable symbiotic bacteria. Focusing on the venom glands and venom of Heteropoda venatoria and Chilobrachys guangxiensis, we identified a diverse array of microorganisms. High-throughput sequencing detected 2151 amplicon sequence variants (ASVs), spanning 31 phyla, 75 classes, and 617 genera. A total of 125 strains of cultivable bacteria were isolated. Using the Oxford cup method, crude extracts from 46 of these strains exhibited inhibitory effects against at least one indicator bacterium. MTT (Thiazolyl blue) assays revealed that the crude extracts from 43 strains had inhibitory effects on tumor cell line MGC-803 growth. Additionally, DAPI (4',6-diamidino-2'-phenylindole) staining and flow cytometry were employed to detect cell apoptosis. The anti-inflammatory activity of nine bacterial strains was assessed using a NO assay kit and enzyme-linked immunosorbent assay (ELISA). This study further investigated the biological activity of venom, exploring the relationship between the venom and the functional activity of venom-associated bacteria.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"156"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663165/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demethylation Inhibitor Fungicides Have a Significantly Detrimental Impact on Population Growth and Composition of Nectar Microbial Communities.","authors":"Sergio Quevedo-Caraballo, Alejandra Roldán, Sergio Álvarez-Pérez","doi":"10.1007/s00248-024-02477-x","DOIUrl":"10.1007/s00248-024-02477-x","url":null,"abstract":"<p><p>Demethylation inhibitor (DMI) fungicides are a mainstay of modern agriculture due to their widespread use for crop protection against plant-pathogenic fungi. However, DMI residues can disperse and persist in the environment, potentially affecting non-target fungi. Previous research has demonstrated that DMIs and other fungicides inhibit yeast growth in floral nectar microbial communities and decrease fungal richness and diversity of exposed flowers with no apparent effect on bacteria. Nevertheless, the effect of DMIs on the population growth of different species of nectar inhabitants and the dynamics of these microbial communities remains understudied. To address these issues, in this study we created synthetic microbial communities including yeasts (Metschnikowia reukaufii and Metschnikowia pulcherrima) and bacteria (Rosenbergiella epipactidis and Comamonas sp.) and propagated them in culture media containing different DMIs (imazalil, propiconazole, and prothioconazole) at different doses or no fungicide. Our results showed that DMIs have a significant impact on some of the most common microbial inhabitants of floral nectar by favoring the growth of bacteria over yeasts. Furthermore, habitat generalists such as M. pulcherrima and Comamonas sp. were more impacted by the presence of fungicides than the nectar specialists M. reukaufii and R. epipactidis, especially upon dispersal across habitat patches. Future research should determine if the patterns observed in the present study hold true for other species of nectar microbes and explore the interaction between growth limitation due to fungicide presence, dispersal limitation, and other mechanisms involved in community assembly in floral nectar.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"160"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diversity and Potential Metabolic Characteristics of Culturable Copiotrophic Bacteria That Can Grow on Low-Nutrient Medium in Zhenbei Seamount in the South China Sea.","authors":"Zhangqi Zhao, Sizhen Liu, Shan Jiang, Dechao Zhang, Zhongli Sha","doi":"10.1007/s00248-024-02475-z","DOIUrl":"10.1007/s00248-024-02475-z","url":null,"abstract":"<p><p>Oligotrophs are predominant in nutrient-poor environments, but copiotrophic bacteria may tolerate conditions of low energy and can also survive and thrive in these nutrient-limited conditions. In the present study, we isolated 648 strains using a dilution plating method after enrichment for low-nutrient conditions. We collected 150 seawater samples at 21 stations in different parts of the water column at the Zhenbei Seamount in the South China Sea. The 648 isolated copiotrophic strains that could grow on low-nutrient medium were in 21 genera and 42 species. A total of 99.4% (644/648) of the bacteria were in the phylum Pseudomonadota, with 73.3% (472/644) in the class Gammaproteobacteria and 26.7% (172/644) in the class Alphaproteobacteria. Among the 42 representative isolates, Pseudoalteromonas arabiensis, Roseibium aggregatum, and Vibrio neocaledonicus were present in all layers of seawater and at almost all of the stations. Almost half of these species (20/42) contained genes that performed nitrate reduction, with confirmation by nitrate reduction testing. These isolates also contained genes that functioned in sulfur metabolism, including sulfate reduction, thiosulfate oxidation, thiosulfate disproportionation, and dimethylsulfoniopropionate degradation. GH23, CBM50, GT4, GT2, and GT51 were the main carbohydrate-active enzymes (CAZymes), and these five enzymes were present in all or almost all of the isolated strains. The most abundant classes of CAZymes were those associated with the degradation of chitin, starch, and cellulose. Collectively, our study of marine copiotrophic bacteria capable of growing on low-nutrient medium demonstrated the diversity of these species and their potential metabolic characteristics.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"157"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microbial EcologyPub Date : 2024-12-21DOI: 10.1007/s00248-024-02466-0
Paradha Nonthijun, Benjawan Tanunchai, Simon Andreas Schroeter, Sara Fareed Mohamed Wahdan, Eliane Gomes Alves, Ines Hilke, François Buscot, Ernst-Detlef Schulze, Terd Disayathanoowat, Witoon Purahong, Matthias Noll
{"title":"Feels Like Home: A Biobased and Biodegradable Plastic Offers a Novel Habitat for Diverse Plant Pathogenic Fungi in Temperate Forest Ecosystems.","authors":"Paradha Nonthijun, Benjawan Tanunchai, Simon Andreas Schroeter, Sara Fareed Mohamed Wahdan, Eliane Gomes Alves, Ines Hilke, François Buscot, Ernst-Detlef Schulze, Terd Disayathanoowat, Witoon Purahong, Matthias Noll","doi":"10.1007/s00248-024-02466-0","DOIUrl":"10.1007/s00248-024-02466-0","url":null,"abstract":"<p><p>Poly(butylene succinate-co-adipate) (PBSA), a biodegradable plastic, is significantly colonized and degraded by soil microbes under natural field conditions, especially by fungal plant pathogens, raising concerns about potential economic losses. This study hypothesizes that the degradation of biodegradable plastics may increase the presence and abundance of plant pathogens by serving as an additional carbon source, ultimately posing a risk to forest ecosystems. We investigated (i) fungal plant pathogens during the exposure of PBSA in European broadleaved and coniferous forests (two forest types), with a specific focus on potential risk to tree health, and (ii) the response of such fungi to environmental factors, including tree species, soil pH, nutrient availability, moisture content, and the physicochemical properties of leaf litter layer. Next-generation sequencing (NGS) revealed that PBSA harbored a total of 318 fungal plant pathogenic amplicon sequence variants (ASVs) belonging to 108 genera. Among the identified genera (Alternaria, Nectria, Phoma, Lophodermium, and Phacidium), some species have been reported as causative agents of tree diseases. Plenodomus was present in high relative abundances on PBSA, which have not previously been associated with disease in broadleaved and coniferous forests. Furthermore, the highest number of fungal plant pathogens were detected at 200 days of PBSA exposure (112 and 99 fungal plant pathogenic ASV on PBSA degraded under Q. robur and F. sylvatic-dominated forest, respectively), which was double compared mature leaves and needles from the same forest sites. These findings suggest that PBSA attracts fungal plant pathogens in forests as an additional carbon source, potentially leading to increased disease outbreaks and disrupting the stability of forest ecosystems. The fungal plant pathogenic community compositions were mainly shaped by forest type, PBSA exposure time, site locations, leaf litter layer water content, and N:P ratio from leaf litter layer in both forest types. This study provides valuable insights into the potential risks posed by biodegradable plastic degradation in forests after 200 and 400 days of exposure, respectively. Further comprehensive evaluations of their effects on tree health and ecosystems, ideally on a long-term basis, are needed. These evaluations should include integrating microbial investigation, soil health monitoring, and ecosystem interaction assessments. Nevertheless, it should be noted that our interpretation of plant pathogens is solely based on high-throughput sequencing, bioinformatics, and annotation tools.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"155"},"PeriodicalIF":3.3,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}