{"title":"Genomic Repertoire of Twenty-Two Novel Vibrionaceae Species Isolated from Marine Sediments.","authors":"Hannah Kaufmann, Carolina Salvador, Vinicius W Salazar, Natália Cruz, Graciela Maria Dias, Diogo Tschoeke, Lucia Campos, Tomoo Sawabe, Masayuki Miyazaki, Fumito Maruyama, Fabiano Thompson, Cristiane Thompson","doi":"10.1007/s00248-025-02533-0","DOIUrl":null,"url":null,"abstract":"<p><p>The genomic repertoire of vibrios has been extensively studied, particularly regarding their metabolic plasticity, symbiotic interactions, and resistance mechanisms to environmental stressors. However, little is known about the genomic diversity and adaptations of vibrios inhabiting deep-sea marine sediments. In this study, we investigated the genomic diversity of vibrios isolated from deep-sea core sediments collected using a manned submersible off Japan. A total of 50 vibrio isolates were obtained and characterized phenotypically, and by genome sequencing. From this total, we disclosed 22 novel species examining genome-to-genome distance, average amino acid identity, and phenotypes (Alivibrio: 1; Enterovibrio: 1; Photobacterium: 8; Vibrio: 12). The novel species have fallen within known clades (e.g., Fisheri, Enterovibrio, Profundum, and Splendidus) and novel clades (JAMM0721, JAMM0388, JAMM0395). The 28 remainder isolates were identified as known species: Aliivibrio sifiae (2), A. salmonicida (1), Enterovibrio baiacu (1), E. norvegicus (1), Photobacterium profundum (3), P. angustum (1), P. chitiniliticum (1), P. frigidiphilum (1), Photobacterium indicum (1), P. sanguinicancri (1). P. swingsii (2), Vibrio alginolyticus (3), V. anguillarum (1), V. campbellii (1), V. fluvialis (1), V. gigantis (1), V. lentus (1), V. splendidus (4), and V. tasmaniensis (1). Genomic analyses revealed that all 50 vibrios harbored genes associated with high-pressure adaptation, including sensor kinases, chaperones, autoinducer-2 (AI-2) signaling, oxidative damage repair, polyunsaturated fatty acid biosynthesis, and stress response mechanisms related to periplasmic and outer membrane protein misfolding under heat shock and osmotic stress. Additionally, alternative sigma factors, trimethylamine oxide (TMAO) respiration, and osmoprotectant acquisition pathways were identified, further supporting their ability to thrive in deep-sea environments. Notably, the genomes exhibited a high prevalence of antibiotic resistance genes, with antibiotic efflux pumps being the most abundant group. The ugd gene expanded in number in some novel species (Photobacterium satsumensis sp. nov. JAMM1754: 4 copies; Vibrio makurazakiensis sp. nov. JAMM1826: 3 copies). This gene may confer antibiotic (polymyxin) resistance to these vibrios.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"36"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12041005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02533-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genomic repertoire of vibrios has been extensively studied, particularly regarding their metabolic plasticity, symbiotic interactions, and resistance mechanisms to environmental stressors. However, little is known about the genomic diversity and adaptations of vibrios inhabiting deep-sea marine sediments. In this study, we investigated the genomic diversity of vibrios isolated from deep-sea core sediments collected using a manned submersible off Japan. A total of 50 vibrio isolates were obtained and characterized phenotypically, and by genome sequencing. From this total, we disclosed 22 novel species examining genome-to-genome distance, average amino acid identity, and phenotypes (Alivibrio: 1; Enterovibrio: 1; Photobacterium: 8; Vibrio: 12). The novel species have fallen within known clades (e.g., Fisheri, Enterovibrio, Profundum, and Splendidus) and novel clades (JAMM0721, JAMM0388, JAMM0395). The 28 remainder isolates were identified as known species: Aliivibrio sifiae (2), A. salmonicida (1), Enterovibrio baiacu (1), E. norvegicus (1), Photobacterium profundum (3), P. angustum (1), P. chitiniliticum (1), P. frigidiphilum (1), Photobacterium indicum (1), P. sanguinicancri (1). P. swingsii (2), Vibrio alginolyticus (3), V. anguillarum (1), V. campbellii (1), V. fluvialis (1), V. gigantis (1), V. lentus (1), V. splendidus (4), and V. tasmaniensis (1). Genomic analyses revealed that all 50 vibrios harbored genes associated with high-pressure adaptation, including sensor kinases, chaperones, autoinducer-2 (AI-2) signaling, oxidative damage repair, polyunsaturated fatty acid biosynthesis, and stress response mechanisms related to periplasmic and outer membrane protein misfolding under heat shock and osmotic stress. Additionally, alternative sigma factors, trimethylamine oxide (TMAO) respiration, and osmoprotectant acquisition pathways were identified, further supporting their ability to thrive in deep-sea environments. Notably, the genomes exhibited a high prevalence of antibiotic resistance genes, with antibiotic efflux pumps being the most abundant group. The ugd gene expanded in number in some novel species (Photobacterium satsumensis sp. nov. JAMM1754: 4 copies; Vibrio makurazakiensis sp. nov. JAMM1826: 3 copies). This gene may confer antibiotic (polymyxin) resistance to these vibrios.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.