{"title":"Effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY alloys","authors":"Yang Zhang, Shunping Sun and Xiaoyang Chen","doi":"10.1088/2053-1591/ad78b2","DOIUrl":"https://doi.org/10.1088/2053-1591/ad78b2","url":null,"abstract":"The design of new ultra-light Mg-Li alloys have great significance in aerospace and other fields. In this paper, Sn and Y elements were simultaneously added into Mg-8Li-3Al (wt%) alloy and the effect of Y content on microstructure evolution and tensile properties of Mg-8Li-3Al-2Sn-xY (wt%) alloys was studied. The as-cast Mg-8Li-3Al-2Sn alloy is composed of α-Mg + β-Li duplex-phase matrix, fine MgLiAl2 phase and coarse fishbone-like Li2MgSn phase. As Y element is added, granular Al2Y phase is formed, and grain size of α-Mg phase decreases significantly with shape changing from well-developed coarse dendritic to equiaxed dendritic. After hot extrusion, α-Mg phase is elongated along the extrusion direction, and β-Li phase undergoes complete dynamic recrystallization and transforms into fine equiaxed grains. The addition of 0.5% Y improves the tensile properties of as-cast Mg-8Li-3Al-2Sn-0.5Y alloy. However, the tensile properties show a downward trend with further increase of Y content. Hot extrusion significantly enhances the tensile properties of Mg-8Li-3Al-2Sn-xY alloys. Similarly, strength reaches the highest when the Y content is 0.5% for extruded Mg-8Li-3Al-2Sn-xY alloys.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"26 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yun Liu, Shilin Ma, Zuhong Xiong, Bin Xiong and Lihong Cheng
{"title":"Enhanced the sensing sensitivity of the metamaterial absorbers with patterned convex graphene in the terahertz","authors":"Yun Liu, Shilin Ma, Zuhong Xiong, Bin Xiong and Lihong Cheng","doi":"10.1088/2053-1591/ad7922","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7922","url":null,"abstract":"In this paper, a patterned graphene metamaterial terahertz absorber is theoretically designed. The proposed absorber consists of a gold layer, a dielectric layer of SiO2, and graphene. The sensing sensitivity of the proposed absorber is simulated for the absence and presence of a square convex nanostructure, trapezoidal convex nanostructure, and rounded convex nanostructure. The sensitivity comparison between convex and absent convex nanostructures is studied, compared to no convex nanostructure, the simulated results show that the sensing sensitivity can be improved with the convex nanostructures, it is found that the absorber has two obvious absorption peaks, and it is insensitive to TE and TM polarization, and the maximum sensitivity corresponding to low-frequency and high-frequency modes is 0.911 THz RIU−1 and 1.561 THz RIU−1, respectively. Our work will play an important role in improving the sensing sensitivity of the graphene metamaterial absorber. Meanwhile, it can also greatly promote the application of biological sensing, modulation, integrated photodetectors, frequency selectors, sensors, filters and so on.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asad Malik, Abdul Basit, Muhammad Farzik Ijaz, Furqan Anwar, Malik Adeel Umer and Yang Shao
{"title":"Microstructure and mechanical properties of TiC reinforced NbC-Ni4VC4Mo2C cermets","authors":"Asad Malik, Abdul Basit, Muhammad Farzik Ijaz, Furqan Anwar, Malik Adeel Umer and Yang Shao","doi":"10.1088/2053-1591/ad78b4","DOIUrl":"https://doi.org/10.1088/2053-1591/ad78b4","url":null,"abstract":"The class of NbC-Ni cermets has emerged as a promising environmentally friendly alternative to WC-Co cemented carbide tools, although some inherent properties i.e. room temperature hardness and flexural strength, of NbC-Ni cermets may require further enhancements. To enhance the properties of NbC-Ni cermets, diverse methodologies were applied, including grain inhibition and the strengthening of the cermet through the use of reinforcements. This study systematically examined the impact of TiC additions, specifically at 10% and 20%, on both the microstructure and mechanical properties of NbC-12Ni-4VC-4Mo2C cermets. NbC-12Ni cermets were fabricated via vacuum liquid phase sintering (LPS) at 1400 °C and 1450 °C. Enhancements by incorporating 4% VC and 4% Mo2C, followed by TiC at 10% and 20% concentrations to the NbC-Ni-4VC4Mo2C cermet were made. XRD and SEM results confirm the formation of (Nb, X, Y) C solid solution cubic FCC carbides. Significant grain refinement was evident in the cermet samples, subjected to grain inhibition. The observed grain sizes ranged from a maximum of 6.84 μm (in NbC12Ni) to a minimum of 2.154 μm (in the sample containing 20% TiC) at 1450 °C. The incorporation of 20TiC at 1450 °C led to a remarkable 26.5% enhancement in average hardness compared to NbC-Ni cermet, and a 4.2% improvement over the 4VC4Mo2C cermet. At 1450 °C, 20TiC reinforcement led to an average fracture toughness of 9.331 MPa√m, representing a 4.56% improvement over the 4VC4Mo2C cermet. However, there was a marginal reduction in toughness compared to the NbC-Ni cermet. Moreover, the addition of TiC led to a decrease in the flexural strength of the cermets, with a maximum flexural strength of 939 N mm−2 recorded for NbC-Ni-4VC4Mo2C, representing an 11.6% increase compared to the NbC-Ni cermet.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"3 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gana G S, Poornachandra Pandit and Shreelaxmi Prashanth
{"title":"Properties of alkali activated masonry units incorporating Linz-Donawitz (LD) steel slag aggregates and Mangalore tile waste (MTW)","authors":"Gana G S, Poornachandra Pandit and Shreelaxmi Prashanth","doi":"10.1088/2053-1591/ad7812","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7812","url":null,"abstract":"The existing cement masonry units consume cement, natural resources and fuel making it less sustainable. The unrestrained utilization of natural resources and substantial production of industrial wastes has led to reuse and recycling for sustainable development. Among the prevailing industrial wastes, steel slags are presently dumped in landfills. Previous studies have utilized Linz Donawitz (LD) slag aggregates as a partial replacement for natural aggregates. On the other hand, the locally available Mangalore tile waste (MTW) was studied as a natural aggregate replacement. In the current investigation, the LD slag aggregates, and the MTW fine powder, aggregates were incorporated into the masonry system and accessed their fresh properties such as setting time, flow and hardened property -compressive strength, along with microstructural investigations. The masonry mixes indicated that the LD slag type 3 and M sand-based masonry unit exhibited higher compressive strength, around 40 MPa, and can be categorized as heavy-duty bricks according to IS 2180:1988.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"73 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Peter J Nunez, Vaibhav Sharma, Jessika V Rojas, Radhika Barua and Ravi L Hadimani
{"title":"Effect of x-ray irradiation on magnetocaloric materials, (MnNiSi)1-x(Fe2Ge)x and LaFe13-x-yMnxSiyHz","authors":"John Peter J Nunez, Vaibhav Sharma, Jessika V Rojas, Radhika Barua and Ravi L Hadimani","doi":"10.1088/2053-1591/ad791f","DOIUrl":"https://doi.org/10.1088/2053-1591/ad791f","url":null,"abstract":"Understanding the behavior of magnetocaloric materials when exposed to high-energy x-ray irradiation is pivotal for advancing magnetic cooling technologies under extreme environments. This study investigates the magnetic and structural changes of two well-studied magnetocaloric materials, (MnNiSi)1−x(Fe2Ge)x composition (x = 0.34) and LaFe13-x-yMnxSiyHz composition (x = 0.30,y = 0.1.26 and z = 1.53) alloys upon irradiation. The alloys were exposed to x-ray radiation with a dosage of a continuous sweeping rate of ∼>120 Gy min−1 and an absorbed dose of 35 kGy . Both the samples didn’t show any observable crystal change after irradiation. There was a considerable change in magnetization at low applied magnetic fields in magnetization versus temperature measurements from 2.72 emu g−1 to 4.01 emu g−1 in the irradiated (MnNiSi)1−x(Fe2Ge)x sample and 4.41 emu g−1 to 5.49 emu/g for the LaFe13-x-yMnxSiyHz alloys. The Magnetization versus magnetic field isotherms near transition temperature exhibited irradiation-induced magnetic hysteresis for the (MnNiSi)1−x(Fe2Ge)x (x = 0.34) while the LaFe13-x-yMnxSiyHz samples did not result in any irradiation-induced magnetic hysteresis. In both the samples the magnitude of entropy change did not change due to irradiation however, the peak entropy change shifted to different temperatures in both the samples, (MnNiSi)1−x(Fe2Ge)x (x = 0.34), showed a maximum entropy change, ΔSmag of ∼ 11.139 J/kgK at 317.5 K compared to ΔSmag of ∼ 11.349 J/kgK at Tave peak of 312.5 K for the irradiated sample. LaFe13-x-yMnxSiyHz, pristine sample exhibited a maximum magnetic entropy change, ΔSmag ∼ 18.663 J/kgK, with the corresponding peak temperature, Tave peak, of 295 K compared to ΔSmag ∼ 18.736 J/kgK, at Tave peak of 300 K. It was determined that irradiation applied to the samples did not induce any structural or magnetic phase changes in the selected compositions but rather modified the magnetic properties marginally.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"47 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wadea Ameen, Moath Alatefi, Abdulrahman Al-Ahmari, Murtadha Aldoukhi, Atef M Ghaleb and Abdullah Alfaify
{"title":"Multivariate process capability analysis for evaluating metal additive manufacturing via electron beam melting","authors":"Wadea Ameen, Moath Alatefi, Abdulrahman Al-Ahmari, Murtadha Aldoukhi, Atef M Ghaleb and Abdullah Alfaify","doi":"10.1088/2053-1591/ad7923","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7923","url":null,"abstract":"Electron beam melting (EBM) as one of the relatively new metal AM techniques showed promising and increasing applications. Therefore, there is a need to evaluate the quality of the EBM process using its critical quality characteristics. However, EBM and different AM process parts have many functionally or statistically correlated quality characteristics. Consequently, the quality characteristics of the EBM process should be evaluated together. Therefore, this research aims to evaluate the quality of the EBM process using a multivariate process capability index (MPCI). In this study, the dimensional accuracy in different directions is considered as a quality characteristics. The proposed methodology involves producing a large sample of small specimens of square shape using EBM technology. Three critical dimensions of the specimen in the X, Y, and Z axis are investigated as quality characteristics. The dimensions of quality characteristics are measured using a precise measurement device. The normality and stability assumptions of the collected data are investigated using skewness measure, and multivariate process control chart respectively. Then a large sample of the multivariate normal data is simulated using computer software to estimate the percent of nonconforming (PNC) from the established specification limits, which is used to estimate MPCI. Finally, the capable tolerance of the process is estimated and the sensitivity analysis of variation is investigated. The results show the capability of the EBM process under different specification limits designations. Estimating MPCI revealed that the EBM process is capable under very coarse limits only. Moreover, the sensitivity analysis showed that variation in quality characteristics data is very sensitive for MPCI estimation, especially variation in width quality characteristic.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of scanning speeds on microstructure evolution and properties of 70Cr8Ni2Y coatings by direct laser deposition","authors":"Xueting Chen, Chang Zhao, Xiaoou Zhu, Guili Yin and Yun Xu","doi":"10.1088/2053-1591/ad78af","DOIUrl":"https://doi.org/10.1088/2053-1591/ad78af","url":null,"abstract":"The 70Cr8Ni2Y coatings were prepared by direct laser deposition (DLD) with different scanning speeds. The microstructure evolution and the relationship between microstructure and properties of the coatings were studied. The results demonstrated that the microstructure of DLD 70Cr8Ni2Y coatings was martensite, and the phases were α′ (Fe-Cr) and γ-Fe (Fe-Ni). With the increased of scanning speed, the martensite size decreased from 5.42 ± 0.04 μm to 4.42 ± 0.01 μm and 3.20 ± 0.02 μm. When the scanning speed was 20 mm s−1, the fabricated coating displayed the highest average microhardness (883 ± 37 HV) and the lowest mass wear rate (0.061 mg mm−1) without pores. The combined strengthening effect of fine grain strengthening and solid solution strengthening, as well as good formability, were the fundamental reasons for the high hardness and wear resistance of the coating. The results of this study can provide an experimental basis for the DLD alloy coatings with high hardness and wear resistance.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hailuo Fu, Dali Wei, Chenghao Zhu, Shuyang Liu and Qing Lin
{"title":"Formation and characterization of zirconium based conversion film on AZ31 magnesium alloy","authors":"Hailuo Fu, Dali Wei, Chenghao Zhu, Shuyang Liu and Qing Lin","doi":"10.1088/2053-1591/ad7811","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7811","url":null,"abstract":"Magnesium alloys have great potential in biomedical applications due to their unique combination of satisfactory mechanical property and decent biodegradability. However, their poor corrosion resistance limits their applications in biomedical fields. In this work, we employ a chemical conversion deposition method to prepare a Zr-based conversion film on the surface of AZ31 magnesium alloy to serve as a passivation layer. The mechanism for the film formation was studied and it showed the deposition process consists of four steps: substrate dissolution, nucleation, film growth, and film equilibrium. The film is mainly composed of Zr(OH)4/ZrO and Mg(OH)2/MgO with small amount of MgF2 and ZrF4. The protective performance of the Zr-based film was investigated by electrochemical and immersion tests in simulated body fluid (SBF). Electrochemical results showed a significant decrease in the corrosion current density (Icorr), a positive shift of corrosion potential (Ecorr), a bigger capacitive loop diameter and higher impedance values for the Zr-coated substrate as compared with an uncoated one. Immersion results indicated the corrosion rate of the Zr-coated sample was ∼20% lower than that of an uncoated one. All above results corroborate the great potential of Zr-based coating in enabling AZ31 alloy for biomedical applications.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"59 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasticity and strength of an equiatomic and a non-equiatomic HfNbTaTiZr high entropy alloy during uniaxial loading : a molecular dynamics simulation study","authors":"Puja Bordoloi, Manash Protim Hazarika, Ajay Tripathi and Somendra Nath Chakraborty","doi":"10.1088/2053-1591/ad7920","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7920","url":null,"abstract":"Understanding plasticity and strength of high entropy alloys of HfNbTaTiZr is extremely significant in building nuclear reactors, gas turbines, aerospace devices etc. Here we study an equiatomic (Hf0.20-Nb0.20-Ta0.20-Ti0.2-Zr0.20) and a non-equiatomic (Hf0.35-Nb0.20-Ta0.15-Ti0.15-Zr0.15) mixture of two alloys under uniaxial tensile loading from molecular dynamics simulations. Modified Embedded atom potential is used to model both these bcc alloys and all simulations are performed at 300 K with three different tensile strain rates–0.0002, 0.0005 and 0.001 ps−1. Radial distribution functions, bond-orientational parameters and OVITO are used to analyse the MD trajectories. At 0.001 ps−1 strain, both these alloys deform similarly, but differences are observed at 0.0005 and 0.0002 ps−1 strains. At these rates, both alloys deform elastically till 3%, thereafter they deform plastically till 15%–20% strain. Yield strengths are comparable in the elastic limit but in the plastic limit non-equiatomic alloy have higher strength. In equiatomic alloy, bcc phase transforms to fcc whereas in non-equiatomic alloy bcc phase transforms to both fcc and hcp. Formation of hcp atoms (50%) decrease the plasticity of the non-equiatomic alloy but increases its strength. We also observe that in both these alloys and at all strain rates, bcc atoms transform to fcc/hcp atoms through an intermediate amorphous like state. Local coordination and orientation of all atoms change similarly in equiatomic mixture. But in non-equiatomic mixture local orientation in Hf, Ti and Zr changes differently compared to Nb and Ta.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"2 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple green synthesis of carbon quantum dots from Prunus Armeniaca and their application as fluorescent probes for the selective and sensitive detection of Cd2+ metal ion","authors":"M Mujahid","doi":"10.1088/2053-1591/ad7921","DOIUrl":"https://doi.org/10.1088/2053-1591/ad7921","url":null,"abstract":"This study used a hydrothermal approach to synthesis carbon dots (CDs) from apricot peel, which were then used as a probe for the selective and sensitive detection of Cd2+ ions. The synthesized CDs’ surface groupings, structure, shape, biological nature, and overall size were examined using standard characterization techniques. With a quantum yield of 22.1%, these CDs showed excitation-dependent fluorescence emission. In addition, Cd2+ ions were distinguished from other metal ions by a noticeable drop in fluorescence intensity. The fluorescence probe showed a linear response ranging from 0–300 μM and a detection threshold (DT) of 0.21 μM, indicating its effectiveness for Cd2+ detection. Furthermore, the CDs demonstrated the practical application by detecting Cd2+ ion in actual water samples.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"65 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}