Plasticity and strength of an equiatomic and a non-equiatomic HfNbTaTiZr high entropy alloy during uniaxial loading : a molecular dynamics simulation study

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Puja Bordoloi, Manash Protim Hazarika, Ajay Tripathi and Somendra Nath Chakraborty
{"title":"Plasticity and strength of an equiatomic and a non-equiatomic HfNbTaTiZr high entropy alloy during uniaxial loading : a molecular dynamics simulation study","authors":"Puja Bordoloi, Manash Protim Hazarika, Ajay Tripathi and Somendra Nath Chakraborty","doi":"10.1088/2053-1591/ad7920","DOIUrl":null,"url":null,"abstract":"Understanding plasticity and strength of high entropy alloys of HfNbTaTiZr is extremely significant in building nuclear reactors, gas turbines, aerospace devices etc. Here we study an equiatomic (Hf0.20-Nb0.20-Ta0.20-Ti0.2-Zr0.20) and a non-equiatomic (Hf0.35-Nb0.20-Ta0.15-Ti0.15-Zr0.15) mixture of two alloys under uniaxial tensile loading from molecular dynamics simulations. Modified Embedded atom potential is used to model both these bcc alloys and all simulations are performed at 300 K with three different tensile strain rates–0.0002, 0.0005 and 0.001 ps−1. Radial distribution functions, bond-orientational parameters and OVITO are used to analyse the MD trajectories. At 0.001 ps−1 strain, both these alloys deform similarly, but differences are observed at 0.0005 and 0.0002 ps−1 strains. At these rates, both alloys deform elastically till 3%, thereafter they deform plastically till 15%–20% strain. Yield strengths are comparable in the elastic limit but in the plastic limit non-equiatomic alloy have higher strength. In equiatomic alloy, bcc phase transforms to fcc whereas in non-equiatomic alloy bcc phase transforms to both fcc and hcp. Formation of hcp atoms (50%) decrease the plasticity of the non-equiatomic alloy but increases its strength. We also observe that in both these alloys and at all strain rates, bcc atoms transform to fcc/hcp atoms through an intermediate amorphous like state. Local coordination and orientation of all atoms change similarly in equiatomic mixture. But in non-equiatomic mixture local orientation in Hf, Ti and Zr changes differently compared to Nb and Ta.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad7920","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding plasticity and strength of high entropy alloys of HfNbTaTiZr is extremely significant in building nuclear reactors, gas turbines, aerospace devices etc. Here we study an equiatomic (Hf0.20-Nb0.20-Ta0.20-Ti0.2-Zr0.20) and a non-equiatomic (Hf0.35-Nb0.20-Ta0.15-Ti0.15-Zr0.15) mixture of two alloys under uniaxial tensile loading from molecular dynamics simulations. Modified Embedded atom potential is used to model both these bcc alloys and all simulations are performed at 300 K with three different tensile strain rates–0.0002, 0.0005 and 0.001 ps−1. Radial distribution functions, bond-orientational parameters and OVITO are used to analyse the MD trajectories. At 0.001 ps−1 strain, both these alloys deform similarly, but differences are observed at 0.0005 and 0.0002 ps−1 strains. At these rates, both alloys deform elastically till 3%, thereafter they deform plastically till 15%–20% strain. Yield strengths are comparable in the elastic limit but in the plastic limit non-equiatomic alloy have higher strength. In equiatomic alloy, bcc phase transforms to fcc whereas in non-equiatomic alloy bcc phase transforms to both fcc and hcp. Formation of hcp atoms (50%) decrease the plasticity of the non-equiatomic alloy but increases its strength. We also observe that in both these alloys and at all strain rates, bcc atoms transform to fcc/hcp atoms through an intermediate amorphous like state. Local coordination and orientation of all atoms change similarly in equiatomic mixture. But in non-equiatomic mixture local orientation in Hf, Ti and Zr changes differently compared to Nb and Ta.
等原子和非等原子 HfNbTaTiZr 高熵合金在单轴加载过程中的塑性和强度:分子动力学模拟研究
了解 HfNbTaTiZr 高熵合金的塑性和强度对建造核反应堆、燃气轮机和航空航天设备等意义重大。在此,我们通过分子动力学模拟研究了等原子(Hf0.20-Nb0.20-Ta0.20-Ti0.2-Zr0.20)和非等原子(Hf0.35-Nb0.20-Ta0.15-Ti0.15-Zr0.15)两种合金混合物在单轴拉伸载荷下的塑性。所有模拟均在 300 K 温度和三种不同的拉伸应变速率-0.0002、0.0005 和 0.001 ps-1 下进行。径向分布函数、键取向参数和 OVITO 被用来分析 MD 轨迹。在应变为 0.001 ps-1 时,这两种合金的变形情况相似,但在应变为 0.0005 和 0.0002 ps-1 时则有所不同。在这些应变率下,两种合金都会发生弹性变形,直至 3%,然后发生塑性变形,直至 15%-20%。在弹性极限下,屈服强度相当,但在塑性极限下,非等原子合金的强度更高。在等原子合金中,bcc 相转变为 fcc 相,而在非等原子合金中,bcc 相同时转变为 fcc 相和 hcp 相。hcp 原子的形成(50%)降低了非等原子合金的塑性,但增加了其强度。我们还观察到,在这两种合金中,在所有应变速率下,bcc 原子都会通过中间的非晶态转化为 fcc/hcp 原子。在等原子混合物中,所有原子的局部配位和取向都发生了类似的变化。但在非等原子混合物中,Hf、Ti 和 Zr 的局部取向变化与 Nb 和 Ta 不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Express
Materials Research Express MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.50
自引率
4.30%
发文量
640
审稿时长
12 weeks
期刊介绍: A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信