Yun Liu, Shilin Ma, Zuhong Xiong, Bin Xiong and Lihong Cheng
{"title":"用图案化凸石墨烯提高超材料吸收器的太赫兹传感灵敏度","authors":"Yun Liu, Shilin Ma, Zuhong Xiong, Bin Xiong and Lihong Cheng","doi":"10.1088/2053-1591/ad7922","DOIUrl":null,"url":null,"abstract":"In this paper, a patterned graphene metamaterial terahertz absorber is theoretically designed. The proposed absorber consists of a gold layer, a dielectric layer of SiO2, and graphene. The sensing sensitivity of the proposed absorber is simulated for the absence and presence of a square convex nanostructure, trapezoidal convex nanostructure, and rounded convex nanostructure. The sensitivity comparison between convex and absent convex nanostructures is studied, compared to no convex nanostructure, the simulated results show that the sensing sensitivity can be improved with the convex nanostructures, it is found that the absorber has two obvious absorption peaks, and it is insensitive to TE and TM polarization, and the maximum sensitivity corresponding to low-frequency and high-frequency modes is 0.911 THz RIU−1 and 1.561 THz RIU−1, respectively. Our work will play an important role in improving the sensing sensitivity of the graphene metamaterial absorber. Meanwhile, it can also greatly promote the application of biological sensing, modulation, integrated photodetectors, frequency selectors, sensors, filters and so on.","PeriodicalId":18530,"journal":{"name":"Materials Research Express","volume":"19 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced the sensing sensitivity of the metamaterial absorbers with patterned convex graphene in the terahertz\",\"authors\":\"Yun Liu, Shilin Ma, Zuhong Xiong, Bin Xiong and Lihong Cheng\",\"doi\":\"10.1088/2053-1591/ad7922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a patterned graphene metamaterial terahertz absorber is theoretically designed. The proposed absorber consists of a gold layer, a dielectric layer of SiO2, and graphene. The sensing sensitivity of the proposed absorber is simulated for the absence and presence of a square convex nanostructure, trapezoidal convex nanostructure, and rounded convex nanostructure. The sensitivity comparison between convex and absent convex nanostructures is studied, compared to no convex nanostructure, the simulated results show that the sensing sensitivity can be improved with the convex nanostructures, it is found that the absorber has two obvious absorption peaks, and it is insensitive to TE and TM polarization, and the maximum sensitivity corresponding to low-frequency and high-frequency modes is 0.911 THz RIU−1 and 1.561 THz RIU−1, respectively. Our work will play an important role in improving the sensing sensitivity of the graphene metamaterial absorber. Meanwhile, it can also greatly promote the application of biological sensing, modulation, integrated photodetectors, frequency selectors, sensors, filters and so on.\",\"PeriodicalId\":18530,\"journal\":{\"name\":\"Materials Research Express\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1591/ad7922\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1591/ad7922","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced the sensing sensitivity of the metamaterial absorbers with patterned convex graphene in the terahertz
In this paper, a patterned graphene metamaterial terahertz absorber is theoretically designed. The proposed absorber consists of a gold layer, a dielectric layer of SiO2, and graphene. The sensing sensitivity of the proposed absorber is simulated for the absence and presence of a square convex nanostructure, trapezoidal convex nanostructure, and rounded convex nanostructure. The sensitivity comparison between convex and absent convex nanostructures is studied, compared to no convex nanostructure, the simulated results show that the sensing sensitivity can be improved with the convex nanostructures, it is found that the absorber has two obvious absorption peaks, and it is insensitive to TE and TM polarization, and the maximum sensitivity corresponding to low-frequency and high-frequency modes is 0.911 THz RIU−1 and 1.561 THz RIU−1, respectively. Our work will play an important role in improving the sensing sensitivity of the graphene metamaterial absorber. Meanwhile, it can also greatly promote the application of biological sensing, modulation, integrated photodetectors, frequency selectors, sensors, filters and so on.
期刊介绍:
A broad, rapid peer-review journal publishing new experimental and theoretical research on the design, fabrication, properties and applications of all classes of materials.