{"title":"Engineering Escherichia coli for efficient glutathione production","authors":"Hiroki Mori , Misato Matsui , Takahiro Bamba , Yoshimi Hori , Sayaka Kitamura , Yoshihiro Toya , Ryota Hidese , Hisashi Yasueda , Tomohisa Hasunuma , Hiroshi Shimizu , Naoaki Taoka , Shingo Kobayashi","doi":"10.1016/j.ymben.2024.07.001","DOIUrl":"10.1016/j.ymben.2024.07.001","url":null,"abstract":"<div><p>Glutathione is a tripeptide of excellent value in the pharmaceutical, food, and cosmetic industries that is currently produced during yeast fermentation. In this case, glutathione accumulates intracellularly, which hinders high production. Here, we engineered <em>Escherichia coli</em> for the efficient production of glutathione. A total of 4.3 g/L glutathione was produced by overexpressing <em>gshA</em> and <em>gshB</em>, which encode cysteine glutamate ligase and glutathione synthetase, respectively, and most of the glutathione was excreted into the culture medium. Further improvements were achieved by inhibiting degradation (Δ<em>ggt</em> and Δ<em>pepT</em>); deleting <em>gor</em> (Δ<em>gor</em>), which encodes glutathione oxide reductase; attenuating glutathione uptake (Δ<em>yliABCD</em>); and enhancing cysteine production (P<sub><em>ompF</em></sub><em>-cysE</em>). The engineered strain KG06 produced 19.6 g/L glutathione after 48 h of fed-batch fermentation with continuous addition of ammonium sulfate as the sulfur source. We also found that continuous feeding of glycine had a crucial role for effective glutathione production. The results of metabolic flux and metabolomic analyses suggested that the conversion of <em>O</em>-acetylserine to cysteine is the rate-limiting step in glutathione production by KG06. The use of sodium thiosulfate largely overcame this limitation, increasing the glutathione titer to 22.0 g/L, which is, to our knowledge, the highest titer reported to date in the literature. This study is the first report of glutathione fermentation without adding cysteine in <em>E. coli</em>. Our findings provide a great potential of <em>E. coli</em> fermentation process for the industrial production of glutathione.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 180-190"},"PeriodicalIF":6.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alyssa M. Worland , Zhenlin Han , Jessica Maruwan , Yu Wang , Zhi-Yan Du , Yinjie J. Tang , Wei Wen Su , Garrett W. Roell
{"title":"Elucidation of triacylglycerol catabolism in Yarrowia lipolytica: How cells balance acetyl-CoA and excess reducing equivalents","authors":"Alyssa M. Worland , Zhenlin Han , Jessica Maruwan , Yu Wang , Zhi-Yan Du , Yinjie J. Tang , Wei Wen Su , Garrett W. Roell","doi":"10.1016/j.ymben.2024.06.010","DOIUrl":"10.1016/j.ymben.2024.06.010","url":null,"abstract":"<div><p><em>Yarrowia lipolytica</em> is an industrial yeast that can convert waste oil to value-added products. However, it is unclear how this yeast metabolizes lipid feedstocks, specifically triacylglycerol (TAG) substrates. This study used <sup>13</sup>C-metabolic flux analysis (<sup>13</sup>C-MFA), genome-scale modeling, and transcriptomics analyses to investigate <em>Y. lipolytica</em> W29 growth with oleic acid, glycerol, and glucose. Transcriptomics data were used to guide <sup>13</sup>C-MFA model construction and to validate the <sup>13</sup>C-MFA results. The <sup>13</sup>C-MFA data were then used to constrain a genome-scale model (GSM), which predicted <em>Y. lipolytica</em> fluxes, cofactor balance, and theoretical yields of terpene products. The three data sources provided new insights into cellular regulation during catabolism of glycerol and fatty acid components of TAG substrates, and how their consumption routes differ from glucose catabolism. We found that (1) over 80% of acetyl-CoA from oleic acid is processed through the glyoxylate shunt, a pathway that generates less CO<sub>2</sub> compared to the TCA cycle, (2) the carnitine shuttle is a key regulator of the cytosolic acetyl-CoA pool in oleic acid and glycerol cultures, (3) the oxidative pentose phosphate pathway and mannitol cycle are key routes for NADPH generation, (4) the mannitol cycle and alternative oxidase activity help balance excess NADH generated from β-oxidation of oleic acid, and (5) asymmetrical gene expressions and GSM simulations of enzyme usage suggest an increased metabolic burden for oleic acid catabolism.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"85 ","pages":"Pages 1-13"},"PeriodicalIF":6.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141469294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lizhan Zhang , Jian-Wen Ye , Gang Li , Helen Park , Hao Luo , Yina Lin , Shaowei Li , Weinan Yang , Yuying Guan , Fuqing Wu , Wuzhe Huang , Qiong Wu , Nigel S. Scrutton , Jens Nielsen , Guo-Qiang Chen
{"title":"A long-term growth stable Halomonas sp. deleted with multiple transposases guided by its metabolic network model Halo-ecGEM","authors":"Lizhan Zhang , Jian-Wen Ye , Gang Li , Helen Park , Hao Luo , Yina Lin , Shaowei Li , Weinan Yang , Yuying Guan , Fuqing Wu , Wuzhe Huang , Qiong Wu , Nigel S. Scrutton , Jens Nielsen , Guo-Qiang Chen","doi":"10.1016/j.ymben.2024.06.004","DOIUrl":"10.1016/j.ymben.2024.06.004","url":null,"abstract":"<div><p>Microbial instability is a common problem during bio-production based on microbial hosts. <em>Halomonas bluephagenesis</em> has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering. Based on the freshly completed genome sequence of <em>H. bluephagenesis</em> TD01, which reveals 1889 biological process-associated genes grouped into 84 GO-slim terms. An enzyme constrained genome-scale metabolic model Halo-ecGEM was constructed, which showed strong ability to simulate fed-batch fermentations. A visible salt-stress responsive landscape was achieved by combining GO-slim term enrichment and CVT-based omics profiling, demonstrating that cells deploy most of the protein resources by force to support the essential activity of translation and protein metabolism when exposed to salt stress. Under the guidance of Halo-ecGEM, eight transposases were deleted, leading to a significantly enhanced stability for its growth and bioproduction of various polyhydroxyalkanoates (PHA) including 3-hydroxybutyrate (3HB) homopolymer PHB, 3HB and 3-hydroxyvalerate (3HV) copolymer PHBV, as well as 3HB and 4-hydroxyvalerate (4HB) copolymer P34HB. This study sheds new light on the metabolic characteristics and stress-response landscape of <em>H. bluephagenesis</em>, achieving for the first time to construct a long-term growth stable chassis for industrial applications. For the first time, it was demonstrated that genome encoded transposons are the reason for microbial instability during growth in flasks and fermentors.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 95-108"},"PeriodicalIF":6.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Li , Cheng Li , Chen-Guang Liu , Xin-Qing Zhao , Ruiwen Ou , Charles A. Swofford , Feng-Wu Bai , Gregory Stephanopoulos , Anthony J. Sinskey
{"title":"Engineering carbon source division of labor for efficient α-carotene production in Corynebacterium glutamicum","authors":"Kai Li , Cheng Li , Chen-Guang Liu , Xin-Qing Zhao , Ruiwen Ou , Charles A. Swofford , Feng-Wu Bai , Gregory Stephanopoulos , Anthony J. Sinskey","doi":"10.1016/j.ymben.2024.06.008","DOIUrl":"10.1016/j.ymben.2024.06.008","url":null,"abstract":"<div><p>Effective utilization of glucose, xylose, and acetate, common carbon sources in lignocellulose hydrolysate, can boost biomanufacturing economics. However, carbon leaks into biomass biosynthesis pathways instead of the intended target product remain to be optimized. This study aimed to enhance α-carotene production by optimizing glucose, xylose, and acetate utilization in a high-efficiency <em>Corynebacterium glutamicum</em> cell factory. Heterologous xylose pathway expression in <em>C. glutamicum</em> resulted in strain m4, exhibiting a two-fold increase in α-carotene production from xylose compared to glucose. Xylose utilization was found to boost the biosynthesis of pyruvate and acetyl-CoA, essential precursors for carotenoid biosynthesis. Additionally, metabolic engineering including <em>pck, pyc, ppc</em>, and <em>aceE</em> deletion, completely disrupted the metabolic connection between glycolysis and the TCA cycle, further enhancing α-carotene production. This strategic intervention directed glucose and xylose primarily towards target chemical production, while acetate supplied essential metabolites for cell growth recovery. The engineered strain <em>C. glutamicum</em> m8 achieved 30 mg/g α-carotene, 67% higher than strain m4. In fed-batch fermentation, strain m8 produced 1802 mg/L of α-carotene, marking the highest titer reported to date in microbial fermentation. Moreover, it exhibited excellent performance in authentic lignocellulosic hydrolysate, producing 216 mg/L α-carotene, 1.45 times higher than the initial strain (m4). These labor-division strategies significantly contribute to the development of clean processes for producing various valuable chemicals from lignocellulosic resources.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 117-127"},"PeriodicalIF":6.8,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cuifang Ye , Mengxin Li , Jucan Gao , Yimeng Zuo , Feng Xiao , Xiaojing Jiang , Jintao Cheng , Lei Huang , Zhinan Xu , Jiazhang Lian
{"title":"Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol","authors":"Cuifang Ye , Mengxin Li , Jucan Gao , Yimeng Zuo , Feng Xiao , Xiaojing Jiang , Jintao Cheng , Lei Huang , Zhinan Xu , Jiazhang Lian","doi":"10.1016/j.ymben.2024.06.007","DOIUrl":"10.1016/j.ymben.2024.06.007","url":null,"abstract":"<div><p>Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of <em>cis-trans</em> nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for <em>cis-trans</em> nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of <em>Pichia pastoris</em> cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and <em>cis-trans</em> nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of <em>ERG20</em>, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of <em>cis-trans</em> nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of <em>P. pastoris</em> cell factories for sustainable production of MIAs and other plant natural products.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 83-94"},"PeriodicalIF":6.8,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-scale models of metabolism and expression predict the metabolic burden of recombinant protein expression","authors":"Omid Oftadeh, Vassily Hatzimanikatis","doi":"10.1016/j.ymben.2024.06.005","DOIUrl":"10.1016/j.ymben.2024.06.005","url":null,"abstract":"<div><p>The production of recombinant proteins in a host using synthetic constructs such as plasmids comes at the cost of detrimental effects such as reduced growth, energetic inefficiencies, and other stress responses, collectively known as metabolic burden. Increasing the number of copies of the foreign gene increases the metabolic load but increases the expression of the foreign protein. Thus, there is a trade-off between biomass and product yield in response to changes in heterologous gene copy number. This work proposes a computational method, rETFL (recombinant Expression and Thermodynamic Flux), for analyzing and predicting the responses of recombinant organisms to the introduction of synthetic constructs. rETFL is an extension to the ETFL formulations designed to reconstruct models of metabolism and expression (ME-models). We have illustrated the capabilities of the method in four studies to (i) capture the growth reduction in plasmid-containing <em>E. coli</em> and recombinant protein production; (ii) explore the trade-off between biomass and product yield as plasmid copy number is varied; (iii) predict the emergence of overflow metabolism in recombinant <em>E. coli</em> in agreement with experimental data; and (iv) investigate the individual pathways and enzymes affected by the presence of the plasmid. We anticipate that rETFL will serve as a comprehensive platform for integrating available omics data for recombinant organisms and making context-specific predictions that can help optimize recombinant expression systems for biopharmaceutical production and gene therapy.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 109-116"},"PeriodicalIF":6.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141331388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fei Yu , Chenyang Li , Tao Zhang , Jingwen Zhou , Jianghua Li , Jian Chen , Guocheng Du , Xinrui Zhao
{"title":"Developing a novel heme biosensor to produce high-active hemoproteins in Pichia pastoris through comparative transcriptomics","authors":"Fei Yu , Chenyang Li , Tao Zhang , Jingwen Zhou , Jianghua Li , Jian Chen , Guocheng Du , Xinrui Zhao","doi":"10.1016/j.ymben.2024.06.002","DOIUrl":"10.1016/j.ymben.2024.06.002","url":null,"abstract":"<div><p>The development of a heme-responsive biosensor for dynamic pathway regulation in eukaryotes has never been reported, posing a challenge for achieving the efficient synthesis of multifunctional hemoproteins and maintaining intracellular heme homeostasis. Herein, a biosensor containing a newly identified heme-responsive promoter, CRISPR/dCas9, and a degradation tag N-degron was designed and optimized to fine-tune heme biosynthesis in the efficient heme-supplying <em>Pichia pastoris</em> P1H9 chassis. After identifying literature-reported promoters insensitive to heme, the endogenous heme-responsive promoters were mined by transcriptomics, and an optimal biosensor was screened from different combinations of regulatory elements. The dynamic regulation pattern of the biosensor was validated by the transcriptional fluctuations of the <em>HEM2</em> gene involved in heme biosynthesis and the subsequent responsive changes in intracellular heme titers. We demonstrate the efficiency of this regulatory system by improving the production of high-active porcine myoglobin and soy hemoglobin, which can be used to develop artificial meat and artificial metalloenzymes. Moreover, these findings can offer valuable strategies for the synthesis of other hemoproteins.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 59-68"},"PeriodicalIF":8.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ian S. Yunus , Graham A. Hudson , Yan Chen , Jennifer W. Gin , Joonhoon Kim , Edward E.K. Baidoo , Christopher J. Petzold , Paul D. Adams , Blake A. Simmons , Aindrila Mukhopadhyay , Jay D. Keasling , Taek Soon Lee
{"title":"Systematic engineering for production of anti-aging sunscreen compound in Pseudomonas putida","authors":"Ian S. Yunus , Graham A. Hudson , Yan Chen , Jennifer W. Gin , Joonhoon Kim , Edward E.K. Baidoo , Christopher J. Petzold , Paul D. Adams , Blake A. Simmons , Aindrila Mukhopadhyay , Jay D. Keasling , Taek Soon Lee","doi":"10.1016/j.ymben.2024.06.001","DOIUrl":"10.1016/j.ymben.2024.06.001","url":null,"abstract":"<div><p>Sunscreen has been used for thousands of years to protect skin from ultraviolet radiation. However, the use of modern commercial sunscreen containing oxybenzone, ZnO, and TiO<sub>2</sub> has raised concerns due to their negative effects on human health and the environment. In this study, we aim to establish an efficient microbial platform for production of shinorine, a UV light absorbing compound with anti-aging properties. First, we methodically selected an appropriate host for shinorine production by analyzing central carbon flux distribution data from prior studies alongside predictions from genome-scale metabolic models (GEMs). We enhanced shinorine productivity through CRISPRi-mediated downregulation and utilized shotgun proteomics to pinpoint potential competing pathways. Simultaneously, we improved the shinorine biosynthetic pathway by refining its design, optimizing promoter usage, and altering the strength of ribosome binding sites. Finally, we conducted amino acid feeding experiments under various conditions to identify the key limiting factors in shinorine production. The study combines meta-analysis of <sup>13</sup>C-metabolic flux analysis, GEMs, synthetic biology, CRISPRi-mediated gene downregulation, and omics analysis to improve shinorine production, demonstrating the potential of <em>Pseudomonas putida</em> KT2440 as platform for shinorine production.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 69-82"},"PeriodicalIF":8.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000740/pdfft?md5=44465b68d63fbfbca8dde006226cbcc1&pid=1-s2.0-S1096717624000740-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jongoh Shin , Daniel C. Zielinski , Bernhard O. Palsson
{"title":"Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering","authors":"Jongoh Shin , Daniel C. Zielinski , Bernhard O. Palsson","doi":"10.1016/j.ymben.2024.05.007","DOIUrl":"10.1016/j.ymben.2024.05.007","url":null,"abstract":"<div><p>Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of <em>Vibrio natriegens</em> to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 34-47"},"PeriodicalIF":8.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000739/pdfft?md5=a9bd2ce014a1acf27200571667e42fcc&pid=1-s2.0-S1096717624000739-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sally J. Huang , Martin J. Lai , Arvin Y. Chen , Ethan I. Lan
{"title":"De novo biosynthesis of 3-hydroxy-3-methylbutyrate as anti-catabolic supplement by metabolically engineered Escherichia coli","authors":"Sally J. Huang , Martin J. Lai , Arvin Y. Chen , Ethan I. Lan","doi":"10.1016/j.ymben.2024.05.006","DOIUrl":"10.1016/j.ymben.2024.05.006","url":null,"abstract":"<div><p>3-Hydroxy-3-methylbutyrate (HMB) is a five-carbon branch-chain hydroxy acid currently used as a dietary supplement to treat sarcopenia and exercise training. However, its current production relies on conventional chemical processes which require toxic substances and are generally non-sustainable. While bio-based syntheses of HMB have been developed, they are dependent on biotransformation of its direct precursors which are generally costly. Therefore, in this work, we developed a synthetic <em>de novo</em> HMB biosynthetic pathway that enables HMB production from renewable resources. This novel HMB biosynthesis employs heterologous enzymes from mevalonate pathway and myxobacterial iso-fatty acid pathway for converting acetyl-CoA to HMB-CoA. Subsequently, HMB-CoA is hydrolyzed by a thioesterase to yield HMB. Upon expression of this pathway, our initial <em>Escherichia coli</em> strain produced 660 mg/L of HMB from glucose in 48 hours. Through optimization of coenzyme A removal from HMB-CoA and genetic operon structure, our final strain achieved HMB production titer of 17.7 g/L in glucose minimal media using a bench-top bioreactor. This engineered strain was further demonstrated to produce HMB from other renewable carbon sources such as xylose, glycerol, and acetate. The results from this work provided a flexible and environmentally benign method for producing HMB.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 48-58"},"PeriodicalIF":8.4,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}