{"title":"Dynamic Microcirculation Characteristics of Plantar Skin Under Metatarsal Head of Human Foot in Response to Life-Like Pressure Stimulus","authors":"Zhenming Zhang, Wen-Ming Chen, Xiong-Gang Yang, Xingyu Zhang, Xu Wang, Jiazhang Huang, Chao Zhang, Xiang Geng, Xin Ma","doi":"10.1111/micc.12860","DOIUrl":"10.1111/micc.12860","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Diabetic foot ulcer (DFU) is a severe complication with high mortality. High plantar pressure and poor microcirculation are considered main causes of DFU. The specific aims were to provide a novel technique for real-time measurement of plantar skin blood flow (SBF) under walking-like pressure stimulus and delineate the first plantar metatarsal head dynamic microcirculation characteristics because of life-like loading conditions in healthy individuals.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Twenty young healthy participants (14 male and 6 female) were recruited. The baseline (i.e., unloaded) SBF of soft tissue under the first metatarsal head were measured using laser Doppler flowmetry (LDF). A custom-made machine was utilized to replicate daily walking pressure exertion for 5 min. The exerted plantar force was adjusted from 10 N (127.3 kPa) to 40 N (509.3 kPa) at an increase of 5 N (63.7 kPa). Real-time SBF was acquired using the LDF. After each pressure exertion, postload SBF was measured for comparative purposes. Statistical analysis was performed using the R software.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>All levels of immediate-load and postload SBF increased significantly compared with baseline values. As the exerted load increased, the postload and immediate-load SBF tended to increase until the exerted load reached 35 N (445.6 kPa). However, in immediate-load data, the increasing trend tended to level off as the exerted pressure increased from 15 N (191.0 kPa) to 25 N (318.3 kPa). For postload and immediate-load SBF, they both peaked at 35 N (445.6 kPa). However, when the exerted force exceeds 35 N (445.6 kPa), both the immediate-load and postload SBF values started to decrease.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our study offered a novel real-time plantar soft tissue microcirculation measurement technique under dynamic conditions. For the first metatarsal head of healthy people, 20 N (254.6 kPa)-plantar pressure has a fair microcirculation stimulus compared with higher pressure. There might be a pressure threshold at 35 N (445.6 kPa) for the first metatarsal head, and soft tissue microcirculation may decrease when local pressure exceeds it.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming-Wei Li, Shang-Jen Chang, Hsi-Hsien Chang, Stephen Shei-Dei Yang
{"title":"Role of Phenylethanolamine-N-methyltransferase on Nicotine-Induced Vasodilation in Rat Cerebral Arteries","authors":"Ming-Wei Li, Shang-Jen Chang, Hsi-Hsien Chang, Stephen Shei-Dei Yang","doi":"10.1111/micc.12858","DOIUrl":"10.1111/micc.12858","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>The sympathetic–parasympathetic (or axo–axonal) interaction mechanism mediated that neurogenic relaxation, which was dependent on norepinephrine (NE) releases from sympathetic nerve terminal and acts on β<sub>2</sub>-adrenoceptor of parasympathetic nerve terminal, has been reported. As NE is a weak β<sub>2</sub>-adrenoceptor agonist, there is a possibility that synaptic NE is converted to epinephrine by phenylethanolamine-<i>N</i>-methyltransferase (PNMT) and then acts on the β<sub>2</sub>-adrenoceptors to induce neurogenic vasodilation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Blood vessel myography technique was used to measure relaxation and contraction responses of isolated basilar arterial rings of rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Nicotine-induced relaxation was sensitive to propranolol, guanethidine (an adrenergic neuronal blocker), and N<sup>ω</sup>-nitro-<span>l</span>-arginine. Nicotine- and exogenous NE-induced vasorelaxation was partially inhibited by LY-78335 (a PNMT inhibitor), and transmural nerve stimulation depolarized the nitrergic nerve terminal directly and was not inhibited by LY-78335; it then induced the release of nitric oxide (NO). Epinephrine-induced vasorelaxation was not affected by LY-78335. However, these vasorelaxations were completely inhibited by atenolol (a β<sub>1</sub>-adrenoceptor antagonist) combined with ICI-118,551 (a β<sub>2</sub>-adrenoceptor antagonist).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results suggest that NE may be methylated by PNMT to form epinephrine and cause the release of NO and vasodilation. These results provide further evidence supporting the physiological significance of the axo–axonal interaction mechanism in regulating brainstem vascular tone.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oluwatobiloba Osikoya, Nataliia Hula, Renée de Nazaré Oliveira da Silva, Styliani Goulopoulou
{"title":"Perivascular Adipose Tissue and Uterine Artery Adaptations to Pregnancy","authors":"Oluwatobiloba Osikoya, Nataliia Hula, Renée de Nazaré Oliveira da Silva, Styliani Goulopoulou","doi":"10.1111/micc.12857","DOIUrl":"10.1111/micc.12857","url":null,"abstract":"<p>Pregnancy is characterized by longitudinal maternal, physiological adaptations to support the development of a fetus. One of the cardinal maternal adaptations during a healthy pregnancy is a progressive increase in uterine artery blood flow. This facilitates sufficient blood supply for the development of the placenta and the growing fetus. Regional hemodynamic changes in the uterine circulation, such as a vast reduction in uterine artery resistance, are mainly facilitated by changes in uterine artery reactivity and myogenic tone along with remodeling of the uterine arteries. These regional changes in vascular reactivity have been attributed to pregnancy-induced adaptations of cell-to-cell communication mechanisms, with an emphasis on the interaction between endothelial and vascular smooth muscle cells. Perivascular adipose tissue (PVAT) is considered the fourth layer of the vascular wall and contributes to the regulation of vascular reactivity in most vascular beds and most species. This review focuses on mechanisms of uterine artery reactivity and the role of PVAT in pregnancy-induced maternal vascular adaptations, with an emphasis on the uterine circulation.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pía C. Burboa, Juliana C. Corrêa-Velloso, Cecilia Arriagada, Andrew P. Thomas, Walter N. Durán, Mauricio A. Lillo
{"title":"Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function","authors":"Pía C. Burboa, Juliana C. Corrêa-Velloso, Cecilia Arriagada, Andrew P. Thomas, Walter N. Durán, Mauricio A. Lillo","doi":"10.1111/micc.12859","DOIUrl":"10.1111/micc.12859","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>The endothelium regulates crucial aspects of vascular function, including hemostasis, vasomotor tone, proliferation, immune cell adhesion, and microvascular permeability. Endothelial cells (ECs), especially in arterioles, are pivotal for flow distribution and peripheral resistance regulation. Investigating vascular endothelium physiology, particularly in microvascular ECs, demands precise isolation and culturing techniques.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Freshly isolated ECs are vital for examining protein expression, ion channel behavior, and calcium dynamics. Establishing primary endothelial cell cultures is crucial for unraveling vascular functions and understanding intact microvessel endothelium roles. Despite the significance, detailed protocols and comparisons with intact vessels are scarce in microvascular research. We developed a reproducible method to isolate microvascular ECs, assessing substrate influence by cultivating cells on fibronectin and gelatin matrix gels. This comparative approach enhances our understanding of microvascular endothelial cell biology.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Microvascular mesenteric ECs expressed key markers (VE-cadherin and eNOS) in both matrix gels, confirming cell culture purity. Under uncoated conditions, ECs were undetected, whereas proteins linked to smooth muscle cells and fibroblasts were evident.</p>\u0000 \u0000 <p>Examining endothelial cell (EC) physiological dynamics on distinct matrix substrates revealed comparable cell length, shape, and Ca<sup>2+</sup> elevations in both male and female ECs on gelatin and fibronectin matrix gels. Gelatin-cultured ECs exhibited analogous membrane potential responses to acetylcholine (ACh) or adenosine triphosphate (ATP), contrasting with their fibronectin-cultured counterparts. In the absence of stimulation, fibronectin-cultured ECs displayed a more depolarized resting membrane potential than gelatin-cultured ECs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Gelatin-cultured ECs demonstrated electrical behaviors akin to intact endothelium from mouse mesenteric arteries, thus advancing our understanding of endothelial cell behavior within diverse microenvironments.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcapillary PO2 Gradients in Contracting Muscles of Type I Diabetic Rats","authors":"Ren Takamizawa, Kazuki Hotta, Yutaka Fujii, Ryo Ikegami, Naoki Hitosugi, Tatsuro Inoue, Hajime Tamiya, Atsuhiro Tsubaki","doi":"10.1111/micc.12870","DOIUrl":"10.1111/micc.12870","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>This study aimed to clarify the effect of Type I diabetes (DIA) on transcapillary <i>P</i>O<sub>2</sub> gradients, which are oxygen-driving factors between the blood and the interstitium, in the contracting muscle of rats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Wistar male rats were divided into the diabetic (streptozocin i.p.) and sham groups. Microvascular and interstitial <i>P</i>O<sub>2</sub> were measured in the extensor digitorum longus muscle during electrical stimulation-induced muscle contraction, using the phosphorescence quenching method. Transcapillary <i>P</i>O<sub>2</sub> gradient, Δ<i>P</i>O<sub>2</sub>, was calculated as microvascular minus interstitial <i>P</i>O<sub>2</sub>.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Resting microvascular <i>P</i>O<sub>2</sub> was higher in the diabetic group than in the sham group (6.3 ± 1.7 vs. 4.7 ± 0.9 mmHg, <i>p</i> < 0.05) and remained for 180 s. Interstitial <i>P</i>O<sub>2</sub> from rest to muscle contraction did not differ between the groups. The Δ<i>P</i>O<sub>2</sub> was higher in the diabetic group than in the sham group at rest and during muscle contraction (4.03 ± 1.42 vs. 2.46 ± 0.90 mmHg at rest; 3.67 ± 1.51 vs. 2.22 ± 0.65 mmHg during muscle contraction, <i>p</i> < 0.05). Marked muscle atrophy was observed in the diabetic group.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>DIA increased microvascular and transcapillary <i>P</i>O<sub>2</sub> gradients in the skeletal muscle. The enhanced <i>P</i>O<sub>2</sub> gradients were maintained from rest to muscle contraction in diabetic muscle.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Navid Singhrao, Victor A. Flores-Tamez, Yumna A. Moustafa, Gopireddy R. Reddy, Abby E. Burns, Kent E. Pinkerton, Chao-Yin Chen, Manuel F. Navedo, Madeline Nieves-Cintrón
{"title":"Nicotine Impairs Smooth Muscle cAMP Signaling and Vascular Reactivity","authors":"Navid Singhrao, Victor A. Flores-Tamez, Yumna A. Moustafa, Gopireddy R. Reddy, Abby E. Burns, Kent E. Pinkerton, Chao-Yin Chen, Manuel F. Navedo, Madeline Nieves-Cintrón","doi":"10.1111/micc.12871","DOIUrl":"10.1111/micc.12871","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs β adrenergic–mediated cAMP signaling in VSM, leading to altered vascular reactivity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor <sup>T</sup>Epac<sup>VV</sup> (Camper), specifically in VSM (e.g., Camper<sub>SM</sub>).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Isoproterenol (ISO)-induced β-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)–exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., Camper<sub>SM</sub> mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results imply that nicotine alters VSM β adrenergic–mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303104/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Striatal Blood Flow Changes by Middle Cerebral Artery Occlusion and Its Effect on Neurological Deficits in Mice","authors":"Miyuki Unekawa, Naoki Tsukada, Tsubasa Takizawa, Yutaka Tomita, Jin Nakahara, Yoshikane Izawa","doi":"10.1111/micc.12861","DOIUrl":"10.1111/micc.12861","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>We attempted to record the regional cerebral blood flow (CBF) simultaneously at various regions of the cerebral cortex and the striatum during middle cerebral artery (MCA) occlusion and to evaluate neurological deficits and infarct formation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>In male C57BL/6J mice, CBF was recorded in three regions including the ipsilateral cerebral cortex and the striatum with laser Doppler flowmeters, and the origin of MCA was occluded with a monofilament suture for 15–90 min. After 48 h, neurological deficits were evaluated, and infarct was examined by triphenyltetrazolium chloride (TTC) staining.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>CBF decrease in the striatum was approximately two-thirds of the MCA-dominant region of the cortex during MCA occlusion. The characteristic CBF fluctuation because of spontaneously occurred spreading depolarization observed throughout the cortex was not found in the striatum. Ischemic foci with slight lower staining to TTC were found in the ipsilateral striatum in MCA-occluded mice for longer than 30 min (<i>n</i> = 54). Twenty-nine among 64 MCA-occluded mice exhibited neurological deficits even in the absence of apparent infarct with minimum staining to TTC in the cortex, and the severity of neurological deficits was not correlated with the size of the cortical infarct.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Neurological deficits might be associated with the ischemic striatum rather than with cortical infarction.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12861","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Pan, Huanghui Shen, Peilun Li, Biyun Lai, Akang Jiang, Wenjie Huang, Fei Lu, Hong Peng, Luping Fang, Wolfgang M. Kuebler, Axel R. Pries, Gangmin Ning
{"title":"In Silico Design of Heterogeneous Microvascular Trees Using Generative Adversarial Networks and Constrained Constructive Optimization","authors":"Qing Pan, Huanghui Shen, Peilun Li, Biyun Lai, Akang Jiang, Wenjie Huang, Fei Lu, Hong Peng, Luping Fang, Wolfgang M. Kuebler, Axel R. Pries, Gangmin Ning","doi":"10.1111/micc.12854","DOIUrl":"10.1111/micc.12854","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Designing physiologically adequate microvascular trees is of crucial relevance for bioengineering functional tissues and organs. Yet, currently available methods are poorly suited to replicate the morphological and topological heterogeneity of real microvascular trees because the parameters used to control tree generation are too simplistic to mimic results of the complex angiogenetic and structural adaptation processes in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We propose a method to overcome this limitation by integrating a conditional deep convolutional generative adversarial network (cDCGAN) with a local fractal dimension-oriented constrained constructive optimization (LFDO-CCO) strategy. The cDCGAN learns the patterns of real microvascular bifurcations allowing for their artificial replication. The LFDO-CCO strategy connects the generated bifurcations hierarchically to form microvascular trees with a vessel density corresponding to that observed in healthy tissues.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The generated artificial microvascular trees are consistent with real microvascular trees regarding characteristics such as fractal dimension, vascular density, and coefficient of variation of diameter, length, and tortuosity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>These results support the adoption of the proposed strategy for the generation of artificial microvascular trees in tissue engineering as well as for computational modeling and simulations of microcirculatory physiology.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Significant Association of Serum Albumin With the Severity of Coronary Microvascular Dysfunction Using Dynamic CZT-SPECT","authors":"Shih-Chieh Chien, Shan-Ying Wang, Cheng-Ting Tsai, Yu-Chien Shiau, Yen-Wen Wu","doi":"10.1111/micc.12853","DOIUrl":"10.1111/micc.12853","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Both low serum albumin (SA) concentration and coronary microvascular dysfunction (CMD) are risk factors for the development of heart failure (HF). We hypothesized that SA concentration is associated with myocardial flow reserve (MFR) and implicated in pathophysiological mechanism of HF.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We retrospectively studied 454 patients undergoing dynamic cardiac cadmium-zinc-telluride myocardial perfusion imaging from April 2018 to February 2020. The population was categorized into three groups according to SA level (g/dL): Group 1: >4, Group 2: 3.5–4, and Group 3: <3.5. Myocardial blood flow (MBF) and myocardial flow reserve (MFR, defined as stress/rest MBF ratio) were compared.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The mean age of the whole cohort was 66.2 years, and 65.2% were men. As SA decreased, stress MBF (mL min<sup>−1</sup> g<sup>−1</sup>) and MFR decreased (MBF: 3.29 ± 1.03, MFR: 3.46 ± 1.33 in Group 1, MBF: 2.95 ± 1.13, MFR: 2.51 ± 0.93 in Group 2, and MBF: 2.64 ± 1.16, MFR: 1.90 ± 0.50 in Group 3), whereas rest MBF (mL min<sup>−1</sup> g<sup>−1</sup>) increased (MBF: 1.05 ± 0.42 in Group 1, 1.27 ± 0.56 in Group 2, and 1.41 ± 0.61 in Group 3). After adjusting for covariates, compared with Group 1, the odds ratios for impaired MFR (defined as MFR < 2.5) were 3.57 (95% CI: 2.32–5.48) for Group 2 and 34.9 (95% CI: 13.23–92.14) for Group 3. The results would be similar if only regional MFR were assessed. The risk prediction for CMD using SA was acceptable, with an AUC of 0.76.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Low SA concentration was associated with the severity of CMD in both global and regional MFR as well as MBF.</p>\u0000 </section>\u0000 </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vacuolar H+-ATPase in Diabetes, Hypertension, and Atherosclerosis","authors":"Na Wang, Liwei Ren, A. H. Jan Danser","doi":"10.1111/micc.12855","DOIUrl":"10.1111/micc.12855","url":null,"abstract":"<p>Vacuolar H<sup>+</sup>-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.12855","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140827965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}