Math. Comput. Model.最新文献

筛选
英文 中文
A new class of entropy stable schemes for hyperbolic systems: Finite element methods 一类新的双曲系统熵稳定格式:有限元法
Math. Comput. Model. Pub Date : 2020-12-09 DOI: 10.1090/mcom/3617
I. Gkanis, C. Makridakis
{"title":"A new class of entropy stable schemes for hyperbolic systems: Finite element methods","authors":"I. Gkanis, C. Makridakis","doi":"10.1090/mcom/3617","DOIUrl":"https://doi.org/10.1090/mcom/3617","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"40 1","pages":"1663-1699"},"PeriodicalIF":0.0,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89565212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative 利用Schwarzian导数计算虚二次数域类域生成器的方法
Math. Comput. Model. Pub Date : 2020-12-03 DOI: 10.1090/mcom/3619
J. Jorgenson, L. Smajlovic, H. Then
{"title":"An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative","authors":"J. Jorgenson, L. Smajlovic, H. Then","doi":"10.1090/mcom/3619","DOIUrl":"https://doi.org/10.1090/mcom/3619","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"21 1","pages":"331-379"},"PeriodicalIF":0.0,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88525115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primes that become composite after changing an arbitrary digit 任意改变一个数字后变成合数的质数
Math. Comput. Model. Pub Date : 2020-11-24 DOI: 10.1090/mcom/3593
M. Filaseta, Jeremiah T. Southwick
{"title":"Primes that become composite after changing an arbitrary digit","authors":"M. Filaseta, Jeremiah T. Southwick","doi":"10.1090/mcom/3593","DOIUrl":"https://doi.org/10.1090/mcom/3593","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"117 1","pages":"979-993"},"PeriodicalIF":0.0,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84932213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the solvability of the nonlinear problems in an algebraically stabilized finite element method for evolutionary transport-dominated equations 演化输运控制方程的代数稳定有限元法非线性问题的可解性
Math. Comput. Model. Pub Date : 2020-11-16 DOI: 10.1090/mcom/3576
V. John, P. Knobloch, Paul Korsmeier
{"title":"On the solvability of the nonlinear problems in an algebraically stabilized finite element method for evolutionary transport-dominated equations","authors":"V. John, P. Knobloch, Paul Korsmeier","doi":"10.1090/mcom/3576","DOIUrl":"https://doi.org/10.1090/mcom/3576","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"595-611"},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77204870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with oblique boundary conditions 斜边界条件下抛物型偏微分方程的Crank-Nicolson格式奇异分裂的超收敛性
Math. Comput. Model. Pub Date : 2020-11-06 DOI: 10.1090/MCOM/3664
Guillaume Bertoli, C. Besse, G. Vilmart
{"title":"Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with oblique boundary conditions","authors":"Guillaume Bertoli, C. Besse, G. Vilmart","doi":"10.1090/MCOM/3664","DOIUrl":"https://doi.org/10.1090/MCOM/3664","url":null,"abstract":"We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We also show that this method recovers stationary states in contrast with splitting methods in general. We prove these results when the source term only depends on the space variable. Numerical experiments suggest that the second order convergence persists with general nonlinearities.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"26 1","pages":"2705-2729"},"PeriodicalIF":0.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88032098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations 退化抛物型方程能量稳定有限元近似的收敛性和后验误差分析
Math. Comput. Model. Pub Date : 2020-11-05 DOI: 10.1090/MCOM/3577
C. Cancès, Flore Nabet, M. Vohralík
{"title":"Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations","authors":"C. Cancès, Flore Nabet, M. Vohralík","doi":"10.1090/MCOM/3577","DOIUrl":"https://doi.org/10.1090/MCOM/3577","url":null,"abstract":"We propose a finite element scheme for numerical approximation of degenerate parabolic problems in the form of a nonlinear anisotropic Fokker-Planck equation. The scheme is energy-stable, only involves physically motivated quantities in its definition, and is able to handle general unstructured grids. Its convergence is rigorously proven thanks to compactness arguments, under very general assumptions. Although the scheme is based on Lagrange finite elements of degree 1, it is locally conservative after a local postprocess giving rise to an equilibrated flux. This also allows to derive a guaranteed a posteriori error estimate for the approximate solution. Numerical experiments are presented in order to give evidence of a very good behavior of the proposed scheme in various situations involving strong anisotropy and drift terms.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"1 1","pages":"517-563"},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82092532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Analysis of finite element methods for surface vector-Laplace eigenproblems 曲面向量-拉普拉斯特征问题的有限元方法分析
Math. Comput. Model. Pub Date : 2020-11-05 DOI: 10.1090/mcom/3728
A. Reusken
{"title":"Analysis of finite element methods for surface vector-Laplace eigenproblems","authors":"A. Reusken","doi":"10.1090/mcom/3728","DOIUrl":"https://doi.org/10.1090/mcom/3728","url":null,"abstract":"In this paper we study finite element discretizations of a surface vector-Laplace eigenproblem. We consider two known classes of finite element methods, namely one based on a vector analogon of the Dziuk-Elliott surface finite element method and one based on the so-called trace finite element technique. A key ingredient in both classes of methods is a penalization method that is used to enforce tangentiality of the vector field in a weak sense. This penalization and the perturbations that arise from numerical approximation of the surface lead to essential nonconformities in the discretization of the variational formulation of the vector-Laplace eigenproblem. We present a general abstract framework applicable to such nonconforming discretizations of eigenproblems. Error bounds both for eigenvalue and eigenvector approximations are derived that depend on certain consistency and approximability parameters. Sharpness of these bounds is discussed. Results of a numerical experiment illustrate certain convergence properties of such finite element discretizations of the surface vector-Laplace eigenproblem.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"25 1","pages":"1587-1623"},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78286539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On probabilistic convergence rates of stochastic Bernstein polynomials 随机Bernstein多项式的概率收敛率
Math. Comput. Model. Pub Date : 2020-11-03 DOI: 10.1090/mcom/3589
Xingping Sun, Zongmin Wu, Xuan Zhou
{"title":"On probabilistic convergence rates of stochastic Bernstein polynomials","authors":"Xingping Sun, Zongmin Wu, Xuan Zhou","doi":"10.1090/mcom/3589","DOIUrl":"https://doi.org/10.1090/mcom/3589","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"80 1","pages":"813-830"},"PeriodicalIF":0.0,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84899642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Abel maps for nodal curves via tropical geometry 阿贝尔通过热带几何绘制节点曲线
Math. Comput. Model. Pub Date : 2020-11-03 DOI: 10.1090/mcom/3717
Alex Abreu, Sally Andria, M. Pacini
{"title":"Abel maps for nodal curves via tropical geometry","authors":"Alex Abreu, Sally Andria, M. Pacini","doi":"10.1090/mcom/3717","DOIUrl":"https://doi.org/10.1090/mcom/3717","url":null,"abstract":"We consider Abel maps for regular smoothing of nodal curves with values in the Esteves compactified Jacobian. In general, these maps are just rational, and an interesting question is to find an explicit resolution. We translate this problem into an explicit combinatorial problem by means of tropical and toric geometry. We show that the solution of the combinatorial problem gives rise to an explicit resolution of the Abel map. We are able to use this technique to construct and study all the Abel maps of degree one.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"295 1","pages":"1971-2025"},"PeriodicalIF":0.0,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77117567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Approximate first-order primal-dual algorithms for saddle point problems 鞍点问题的近似一阶原对偶算法
Math. Comput. Model. Pub Date : 2020-10-29 DOI: 10.1090/mcom/3610
Fan Jiang, Xingju Cai, Zhongming Wu, Deren Han
{"title":"Approximate first-order primal-dual algorithms for saddle point problems","authors":"Fan Jiang, Xingju Cai, Zhongming Wu, Deren Han","doi":"10.1090/mcom/3610","DOIUrl":"https://doi.org/10.1090/mcom/3610","url":null,"abstract":"","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"55 1","pages":"1227-1262"},"PeriodicalIF":0.0,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72816061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信