{"title":"Abel maps for nodal curves via tropical geometry","authors":"Alex Abreu, Sally Andria, M. Pacini","doi":"10.1090/mcom/3717","DOIUrl":null,"url":null,"abstract":"We consider Abel maps for regular smoothing of nodal curves with values in the Esteves compactified Jacobian. In general, these maps are just rational, and an interesting question is to find an explicit resolution. We translate this problem into an explicit combinatorial problem by means of tropical and toric geometry. We show that the solution of the combinatorial problem gives rise to an explicit resolution of the Abel map. We are able to use this technique to construct and study all the Abel maps of degree one.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"295 1","pages":"1971-2025"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider Abel maps for regular smoothing of nodal curves with values in the Esteves compactified Jacobian. In general, these maps are just rational, and an interesting question is to find an explicit resolution. We translate this problem into an explicit combinatorial problem by means of tropical and toric geometry. We show that the solution of the combinatorial problem gives rise to an explicit resolution of the Abel map. We are able to use this technique to construct and study all the Abel maps of degree one.