Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with oblique boundary conditions

Guillaume Bertoli, C. Besse, G. Vilmart
{"title":"Superconvergence of the Strang splitting when using the Crank-Nicolson scheme for parabolic PDEs with oblique boundary conditions","authors":"Guillaume Bertoli, C. Besse, G. Vilmart","doi":"10.1090/MCOM/3664","DOIUrl":null,"url":null,"abstract":"We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We also show that this method recovers stationary states in contrast with splitting methods in general. We prove these results when the source term only depends on the space variable. Numerical experiments suggest that the second order convergence persists with general nonlinearities.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"26 1","pages":"2705-2729"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We also show that this method recovers stationary states in contrast with splitting methods in general. We prove these results when the source term only depends on the space variable. Numerical experiments suggest that the second order convergence persists with general nonlinearities.
斜边界条件下抛物型偏微分方程的Crank-Nicolson格式奇异分裂的超收敛性
结果表明,用Crank-Nicolson方法求解具有非齐次一般斜边界条件的扩散-反应方程时,Strang分裂法的阶数为二阶,而用其他龙格-库塔格式甚至精确流动本身求解扩散部分时,通常会出现阶数降低。我们还表明,与一般的分裂方法相比,该方法可以恢复平稳状态。当源项只依赖于空间变量时,我们证明了这些结果。数值实验表明,对于一般的非线性,二阶收敛是持续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信