{"title":"Theoretical Study on the Synthesis Efficiency and Yield of Imidazole Derivatives Based on the Glyoxal and Diamine","authors":"Huaxin Liu, Zhiyang Chen, Yinhua Ma, Meiheng Lv, Shuhui Yin, Fangjian Shang, Jianyong Liu","doi":"10.1002/qua.27476","DOIUrl":"https://doi.org/10.1002/qua.27476","url":null,"abstract":"<div>\u0000 \u0000 <p>Imidazole structures are significant molecular frameworks in pharmaceutical and energetic material research. The synthesis efficiency and yield of their derivatives often vary greatly, making it challenging to establish reaction regularity. In this study, we investigated two types of imidazole derivatives with notably different synthesis efficiencies and yields. Our findings reveal that the catalysis of H<sub>2</sub>O molecules is crucial for ensuring synthesis efficiency, while side reactions are influenced by the acidity of the solution during the process, thereby affecting the synthesis yield. We observed that the energy barrier for the H<sub>2</sub>O-catalyzed ipsilateral H transfer process was reduced to 12.0 from 40.1 kcal/mol, significantly enhancing the reaction efficiency. The synthesis of 34-dihydroxyimidazolidine-2-ketone was found to have a low yield of 19.2% due to competitive side reactions in the reaction system, which have higher energy barriers compared to the desired synthesis pathway. These findings provide a theoretical foundation for future research to optimize the synthesis of imidazole derivatives. Enhancing synthesis conditions could significantly benefit pharmaceutical applications and the development of advanced energetic materials.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Approach to the Study of Acidochromic Properties of Donor-π-Acceptor Systems Based on Dimethylamino-Substituted Dyes With Intramolecular Charge Transfer","authors":"Evgeny Mediantsev, Nikita Dubinets, Natalia Lobova","doi":"10.1002/qua.27488","DOIUrl":"https://doi.org/10.1002/qua.27488","url":null,"abstract":"<div>\u0000 \u0000 <p>This work is devoted to the study of the influence of protonation on the photophysical properties of dimethylamino-substituted styryl dyes. The formation of a bond on the unshared nitrogen electron pair involved in conjugation with the dye chromophore changes the mobility of the terminal group of the donor fragment and thereby “switches” the molecule from n-π* to π-π* mode. The correlations found between changes in the electron density of the dye in native form and during protonation and changes in its properties contribute to the study of the ground and excited states of these compounds and the energy transitions between them. Comparison with analog compounds and consideration of vibronic effects allow us to evaluate the potential advantages and limitations of the TD-DFT method in the calculation of electronic transitions in styryl dyes. The work contributes to the understanding of the influence of protonation on the behavior of dyes with a nitrogen atom in the donor part of the chromophore of the molecule. The patterns found can be applied to similar chromophore systems.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minnet Can Kandemir, Bilge Bicak, Serda Kecel-Gunduz, Gizem Akman
{"title":"Investigation of Hydantoin-Based Drugs Used in the Treatment of Epilepsy Using Quantum Chemical Calculations, Molecular Docking, Molecular Dynamics, ADMET, In Vitro, and Spectroscopic Methods","authors":"Minnet Can Kandemir, Bilge Bicak, Serda Kecel-Gunduz, Gizem Akman","doi":"10.1002/qua.27485","DOIUrl":"https://doi.org/10.1002/qua.27485","url":null,"abstract":"<p>Present investigation deals with the structural and pharmacokinetic properties of hydantoin-based drug molecules such as phenytoin, mephenytoin, and ethotoin. Hydantoin-based drugs are widely used as anticonvulsants in the treatment of epilepsy. In this study, optimized structures, and theoretical vibrational wavenumbers of phenytoin, mephenytoin, and ethotoin molecules were determined using Gaussian 09 program with density functional theory (DFT) and B3LYP/6-311++G(d,p) basis set, vibration mode assignments were performed with the GAR2PED program, and the theoretical results were supported by FTIR and Raman spectroscopy. In addition, thermodynamic parameters, Mulliken charge values, HOMO-LUMO, natural bond orbital, MEP, hyperpolarizability analyzes of hydantoin-based molecules were performed. Docking analysis of all molecules with the GABA-AT receptor, which has an important place in epilepsy studies, were also carried out. Then, the molecular dynamic (MD) simulations of the hydantoin-based drugs-GABA-AT complexes were realized for 50 ns. ADMET profiles of all molecules were determined and presented by parameters of toxicity and drug-likeness. Additionally, to determine the effects of hydantoin-based drugs on glioblastoma cells, cytotoxic effects of phenytoin, mephenytoin, and ethotoin were evaluated on U-87 Human glioblastoma cell line.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pacharaporn Krawmanee, M. Paul Gleeson, Duangkamol Gleeson
{"title":"Computational Investigation of the Ru-Mediated Preparation of Benzothiazoles From N-Arylthioureas: Elucidation of the Reaction Mechanism and the Origin of Differing Substrate Reactivity","authors":"Pacharaporn Krawmanee, M. Paul Gleeson, Duangkamol Gleeson","doi":"10.1002/qua.27480","DOIUrl":"https://doi.org/10.1002/qua.27480","url":null,"abstract":"<div>\u0000 \u0000 <p>Synthesis of novel benzothiazoles via intramolecular C<span></span>S bond formation reactions is increasingly being explored since they have been found in a wide range of natural products and pharmaceutical agents. Sharma et al. reported the ruthenium-catalyzed preparation of novel benzothiazole derivatives from <i>N</i>-arylthiourea precursors, with a range of reaction yields and selectivity being observed. We have employed a density functional theory-based computational model to investigate the reaction mechanism leading to the benzothiazole product and help uncover the origin of the differing experimental yields and substrate specificities. We proposed a modified mechanistic scheme where the rate-determining step to be the synchronized breaking of the peroxide bond of the oxidizing agent with the concomitant proton-coupled electron transfer from the haloarene urea and a Ru-bound water molecule, not electrophilic Ru<span></span>C bond activation. Evidence for this being the rate-determining step is (a) the barrier is consistent with a lack of kinetic isotope effects associated with the <i>ortho</i>-H atom and (b) the computed rate-determining barriers for 10 <i>N</i>-arylthiourea substrates show good correlation with the observed yield.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aparna Dixit, Arti Saxena, Jisha Annie Abraham, Shubha Dubey, Ramesh Sharma, Saif M. H. Qaid, Ivan Štich, Muhammad Aslam, Anatoly Zetsepin
{"title":"Hydrostatic Pressure-Tuning of Opto-Electronic and Thermoelectric Properties Half-Heusler Alloy RhTiP With DFT Analysis","authors":"Aparna Dixit, Arti Saxena, Jisha Annie Abraham, Shubha Dubey, Ramesh Sharma, Saif M. H. Qaid, Ivan Štich, Muhammad Aslam, Anatoly Zetsepin","doi":"10.1002/qua.27482","DOIUrl":"https://doi.org/10.1002/qua.27482","url":null,"abstract":"<div>\u0000 \u0000 <p>Utilizing DFT along with Boltzmann transport theory, the structural, elastic, electrical, optical, and thermoelectric properties of half-Heusler compound RhTiP have been calculated in principle to examine the pressure effect in the range of 0–40 GPa. As pressure increases, the volume and normalized lattice parameter decreased. In addition to satisfying the Born stability criterion, which ensured the compound RhTiP “natural stability,” the zero pressure elastic constants and the pressure-dependent elastic constants are positive up to 40 GPa. The band structure computations guarantee the semiconductor nature of RhTiP, as demonstrated by the presence of electronic band gap of 1.035 eV at zero pressure. Using the Voigt-Reuss-Hill (VRH) averaging scheme under pressure, we have determined the values of this compound's bulk modulus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 </mrow>\u0000 <annotation>$$ B $$</annotation>\u0000 </semantics></math>, shear modulus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$$ G $$</annotation>\u0000 </semantics></math>, Young's modulus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>E</mi>\u0000 </mrow>\u0000 <annotation>$$ E $$</annotation>\u0000 </semantics></math>, Pugh ratio <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>/</mo>\u0000 <mi>G</mi>\u0000 </mrow>\u0000 <annotation>$$ B/G $$</annotation>\u0000 </semantics></math>, Poisson's ratio <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 </mrow>\u0000 <annotation>$$ v $$</annotation>\u0000 </semantics></math>, and anisotropy factor <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 </mrow>\u0000 <annotation>$$ A $$</annotation>\u0000 </semantics></math>. Because the bulk modulus responds linearly to pressure, the material's hardness increases as pressure rises. Additionally, under pressures up to 40 GPa, the optical characteristics of RhTiP, including their reflectivity, absorptivity, conductivity, dielectric constant, refractive index, and loss function, were assessed and discussed. Furthermore, the thermoelectric properties are also studied for the materials and supports the tunning of pressure. This study provides a gateway to how the optoelectronic and transport properties of cubic RhTiP could be tuned by employing external pressure.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Chemical Molecular Dynamics Simulations for Methane-Water Cages","authors":"Giuseppe Lanza","doi":"10.1002/qua.27487","DOIUrl":"https://doi.org/10.1002/qua.27487","url":null,"abstract":"<p>The dynamic stability of various methane-water clathrate-like cages (CH<sub>4</sub>@(H<sub>2</sub>O)<sub><i>n</i></sub>, <i>n</i> = 16, 18, 20, 22), has been analyzed explicitly considering thermal effects by means of ab initio M06-2X/6–31+G*/PCM calculations, which make use of Gaussian basis functions. Starting from the equilibrium filled cage structures, <i>classical</i>, dynamic reaction coordinate (DRC) on the Born–Oppenheimer surface, and <i>semiclassical</i>, Born–Oppenheimer plus harmonic zero-point energy surface (BOMD), molecular dynamics have been carried out. Water molecules have a high tendency to orient covalent O–H bonds tangentially to the hydrophobic surface, thus clathrate-like arrangements are an acceptable model to fully hydrate methane. If the cage size is such as to minimize core repulsion, due to electron cloud overlap, and to maximize host–guest van der Waals attractions, the clathrate-like structures have a life-time of two picoseconds in <i>classical</i> DRC simulations. The inclusion of quantum kinetic energy in BOMD simulations results in less structured cages with a reduced amount of hydrogen bond network. The preferential tangential orientation of the O-H bonds is largely maintained, although few of them point toward the methane for a very short time in BOMD simulations. The reduced configurational space of water molecules hydrating hydrophobic moiety is highlighted, thus any satisfactory molecular modeling has to account for it.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qua.27487","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Khuram Shahzad, Shoukat Hussain, Ghulam Abbas Ashraf, Waqar Azeem, Vineet Tirth, Hassan Alqahtani, Ali Algahtani, Tawfiq Al-Mughanam
{"title":"First Principle Investigations of Cesium Based Cubic CsSiX3 (X = Cl and F) Perovskites for Solar Conversion Applications: A DFT Study","authors":"Muhammad Khuram Shahzad, Shoukat Hussain, Ghulam Abbas Ashraf, Waqar Azeem, Vineet Tirth, Hassan Alqahtani, Ali Algahtani, Tawfiq Al-Mughanam","doi":"10.1002/qua.27481","DOIUrl":"https://doi.org/10.1002/qua.27481","url":null,"abstract":"<div>\u0000 \u0000 <p>The use of solar water-splitting technology is anticipated to reduce the disparity between demand and consumption of energy. Herein, CASTEP software is used to investigate the perovskite CsSiX<sub>3</sub> (X = Cl and F) materials by applying GGA-PBE exchange–correlation functional. According to structure properties, compounds possess a cubic structure of “pm3m” by using space group 221. The direct band gaps in the CsSiX<sub>3</sub> (X = Cl and F) compounds are 1.04 and 1.07 eV, respectively. Measures of the density of states and the partial density of states (PDOS) are being utilized to determine the degree of electron localization in several bands. The compounds' optical characteristics are examined by altering their relation between the dielectric function (DF) scales and the pertinent peak. According to our results, the mechanical properties show that CsSiCl<sub>3</sub> is brittle (0.13, 045) and CsSiF<sub>3</sub> is ductile (0.32, 2.52) and stable with covalent bonds. Compounds CsSiCl<sub>3</sub> and CsSiF<sub>3</sub> modulus and elastic constants are {<i>B</i> (8.259, 52.375), <i>E</i> (8.110, 55.082), and <i>G</i> (18.331, 20.790)} and {<i>C</i><sub>11</sub> (13.766, 73.566), <i>C</i><sub>12</sub> (5.506, 41.780), and <i>C</i><sub>44</sub> (10.763, 24.052)} are found, according to mechanical properties. Therefore, such materials can be used for photovoltaic light absorption in the visible spectrum. These materials offer a wide range of possible uses in sensing and solar conversion because compounds combine effectively.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational Study on SnS2 as Anode Material for Magnesium Ion Battery","authors":"Jianmeng Dang, Yanze Li","doi":"10.1002/qua.27478","DOIUrl":"https://doi.org/10.1002/qua.27478","url":null,"abstract":"<div>\u0000 \u0000 <p>The strain can regulate the electronic properties of transition metal sulfides and enhance their application in ion battery electrode materials. In this article, the potential of single-layer SnS<sub>2</sub> as anode material for magnesium ion batteries under shear strain and torsional strain was studied by first-principles calculation. The calculation of adsorption energy shows that the strain does not have a great influence on the structural stability. The band gap of SnS<sub>2</sub> calculated by HSE06 is 2.210 eV. When Mg is on the surface of SnS<sub>2</sub>, the band gap of SnS<sub>2</sub> drops to 0.113 eV, which shows quasi-metallic properties. Both strains can regulate the band gap value of SnS<sub>2</sub>. The diffusion energy barrier of SnS<sub>2</sub> after strain is significantly lower than that without strain. After torsion strain, the diffusion barrier of Mg ions on SnS<sub>2</sub> is 0.11 eV. The research results provide a theoretical basis for the design of magnesium ion batteries.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Computational Insights Into the Optical, Electronic, and Thermoelectric Characteristics of Novel Rare-Earth Ternary Chalcogenides","authors":"Abdelhay Salah Mohamed, Faheem Abbas","doi":"10.1002/qua.27484","DOIUrl":"https://doi.org/10.1002/qua.27484","url":null,"abstract":"<div>\u0000 \u0000 <p>Rare-earth ternary materials are distinguished by their tunable optoelectronic characteristics and high thermal stability. First principles computations examine the intricate interaction of novel rare-earth-based ternary chalcogenide's electronic, optical, and thermoelectric properties. The spin-down channel of PrHSe exhibits a substantial energy gap resulting in half-metallic behavior. The f orbitals of Pr and Er play an important role in forming bonds with Se and H atoms, contributing significantly to the valence band. The preponderance of Pr-f and Er-f orbitals near the top of the valence band indicate that electrons in these orbitals are the most energetic and participate in bonding interactions within these materials. The ErHSe has a greater absorption rate than PrHSe, and both materials behave isotropically in the <i>xx</i> and <i>zz</i> directions. The highest peaks of the reflection coefficient (50%–70%) in the 1.0–13.8 eV range suggested a significant level of UV reflectivity. The PrHSe has a higher intrinsic carrier concentration for conduction than ErHSe. At lower temperatures, carrier concentrations increase due to thermal activation processes, improving the Seebeck coefficient in these materials.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidating the Hydrolysis and Polymerization Reactions of Al3+-Solvated Molecules by Reactive Molecular Dynamics Simulation","authors":"Feng Liu, Qi Zhao, Yuguo Xia, Xiuling Jiao, Dairong Chen","doi":"10.1002/qua.27483","DOIUrl":"https://doi.org/10.1002/qua.27483","url":null,"abstract":"<div>\u0000 \u0000 <p>Utilizing the reactive molecular dynamics (ReaxFF MD) simulation, we conducted a comprehensive study on the impact of basicity (OH<sup>−</sup>/Al<sup>3+</sup> ratio), concentration, and temperature on the hydrolysis and polymerization reactions of Al<sup>3+</sup>-solvated molecules. Through simulations, we analyzed the structural changes, energy fluctuations of the system, and the evolution patterns of reaction products under different parameters, which were subsequently validated by experimental data. The research results indicate that hydroxide ions in the solution directly influence the breakage of O<span></span>H bonds in the coordinating water molecules of solvated aluminum ions. This, in turn, affects the number of H<sub>2</sub>O and OH<sup>−</sup> ions coordinated with Al<sup>3+</sup>, leading to changes in hydrolysis products. Additionally, the number of OH<sup>−</sup> ions surrounding Al<sup>3+</sup> affects the electrostatic repulsion, making it easier for polymerization reactions to occur as the system approaches the point of zero charge. On the other hand, an increase in concentration and temperature enhances the frequency of cluster collisions, thus contributing to an increase in polymerization degree. The experimental results align closely with our simulated predictions. As the pH value increases, the particle size exhibits a trend of first increasing and then decreasing, reaching a maximum at the point of zero charge. Simultaneously, an increase in concentration also prompts an increase in particle size. The combination of these empirical results with simulations enhances the credibility and reliability of our model's predictive capabilities. This study not only expands our understanding of the relevant chemical reaction processes but also provides important theoretical support for practical applications in related fields.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142244507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}