用重原子取代调节3-羟基硫代色素的三重态形成效率

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Anshuman Bera, Lekshmi R. Nair, Amjatha Siraj, Sivaranjana Reddy Vennapusa
{"title":"用重原子取代调节3-羟基硫代色素的三重态形成效率","authors":"Anshuman Bera,&nbsp;Lekshmi R. Nair,&nbsp;Amjatha Siraj,&nbsp;Sivaranjana Reddy Vennapusa","doi":"10.1002/qua.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We theoretically studied the triplet formation efficiency in positional isomers of bromine-substituted 3-Hydroxythiochromones. Dynamics simulations with relevant spin-orbit coupling parameters show ultrafast triplet formation with S<sub>1</sub> as the donor singlet and upper triplet excited states as receiver states. The near-degeneracy of S<sub>2</sub> with S<sub>1</sub> promotes nonadiabatic population transfer from S<sub>1</sub> to S<sub>2</sub> in isomers with bromine substitution at the 5th position of the parent molecule. This population transfer unfurls an additional intersystem crossing pathway involving S<sub>2</sub> and T<sub>4</sub>, enabling this isomer to show a higher triplet efficiency. The excited-state intramolecular proton transfer process, promoted by low barrier energy, is operative and can affect the isomers' triplet formation efficiency. Moreover, the timescales of proton transfer and triplet formation can overlap, necessitating thorough experimental investigations to uncover the competitiveness of these simultaneous events.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the Triplet Formation Efficiency by Heavy-Atom Substitution in 3-Hydroxythiochromone\",\"authors\":\"Anshuman Bera,&nbsp;Lekshmi R. Nair,&nbsp;Amjatha Siraj,&nbsp;Sivaranjana Reddy Vennapusa\",\"doi\":\"10.1002/qua.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We theoretically studied the triplet formation efficiency in positional isomers of bromine-substituted 3-Hydroxythiochromones. Dynamics simulations with relevant spin-orbit coupling parameters show ultrafast triplet formation with S<sub>1</sub> as the donor singlet and upper triplet excited states as receiver states. The near-degeneracy of S<sub>2</sub> with S<sub>1</sub> promotes nonadiabatic population transfer from S<sub>1</sub> to S<sub>2</sub> in isomers with bromine substitution at the 5th position of the parent molecule. This population transfer unfurls an additional intersystem crossing pathway involving S<sub>2</sub> and T<sub>4</sub>, enabling this isomer to show a higher triplet efficiency. The excited-state intramolecular proton transfer process, promoted by low barrier energy, is operative and can affect the isomers' triplet formation efficiency. Moreover, the timescales of proton transfer and triplet formation can overlap, necessitating thorough experimental investigations to uncover the competitiveness of these simultaneous events.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70001\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70001","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们从理论上研究了溴取代3-羟基硫代铬酮位置异构体的三重态形成效率。采用相关自旋轨道耦合参数进行的动力学模拟表明,以S1为施主单重态,上部三重态激发态为接收态的超快三重态形成。S2与S1的近简并促进了亲本分子第5位溴取代的同分异构体从S1向S2的非绝热种群转移。这种种群转移开启了一个涉及S2和T4的额外的系统间交叉途径,使该异构体显示出更高的三联体效率。受低势垒能推动的激发态分子内质子转移过程是有效的,并能影响同分异构体的三重态形成效率。此外,质子转移和三重态形成的时间尺度可能重叠,需要进行彻底的实验研究来揭示这些同时发生的事件的竞争性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning the Triplet Formation Efficiency by Heavy-Atom Substitution in 3-Hydroxythiochromone

We theoretically studied the triplet formation efficiency in positional isomers of bromine-substituted 3-Hydroxythiochromones. Dynamics simulations with relevant spin-orbit coupling parameters show ultrafast triplet formation with S1 as the donor singlet and upper triplet excited states as receiver states. The near-degeneracy of S2 with S1 promotes nonadiabatic population transfer from S1 to S2 in isomers with bromine substitution at the 5th position of the parent molecule. This population transfer unfurls an additional intersystem crossing pathway involving S2 and T4, enabling this isomer to show a higher triplet efficiency. The excited-state intramolecular proton transfer process, promoted by low barrier energy, is operative and can affect the isomers' triplet formation efficiency. Moreover, the timescales of proton transfer and triplet formation can overlap, necessitating thorough experimental investigations to uncover the competitiveness of these simultaneous events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信