{"title":"Evaluating Electronic Properties of Self-Assembled Indium Phosphide Nanomaterials as High-Efficient Solar Cell","authors":"Run-Ning Zhao, Hua Jin, Fan Lin, Ju-Guang Han","doi":"10.1002/qua.27513","DOIUrl":"https://doi.org/10.1002/qua.27513","url":null,"abstract":"<div>\u0000 \u0000 <p>Geometries and electronic properties associated with relative stabilities and energy gaps of porous (InP)<sub>12n</sub> (<i>n</i> = 1–12) nanoclusters (NCs) (nanowires and nanosheets) are systemically studied by density functional method. The relative stabilities of (InP)<sub>12n</sub> NCs through the calculated fragmentation energies and cluster-binding energies are determined and discussed. Interestingly, the calculated energy gaps of (InP)<sub>12n</sub> nanowires and nanosheets are localized at regions of visible light energy ranges. (InP)<sub>12n</sub> are relatively wide-band semiconductor solar energy nanomaterial. The calculated density of states reveals large-sized porous (InP)<sub>12n</sub> nanosheets and nanowires with narrow pore size distribution and slight thickness and a large surface area manifest ultrahigh specific capacitance of trapping solar light energies and high light-to-electricity conversion efficiencies in solar energy absorption or conversion or photovoltaicsm. Particularly, (InP)<sub>12n</sub> NCs maintain their elemental properties of individual (InP)<sub>12</sub> clusters in the energy gaps of (InP)<sub>12n</sub> (<i>n</i> > 4). NCs are almost independent of variable sizes. Specifically, the size-dependent charge transfers of In atoms in (InP)<sub>12n</sub> NCs exhibit that ionic and covalent bonding exist in (InP)<sub>12n</sub> NCs and can stabilize (InP)<sub>12n</sub> NCs. Comparison with experiment results available is made.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142565478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mudassir Hussain Tahir, Naeem-Ul-Haq Khan, Khalid M. Elhindi
{"title":"Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates","authors":"Mudassir Hussain Tahir, Naeem-Ul-Haq Khan, Khalid M. Elhindi","doi":"10.1002/qua.27510","DOIUrl":"https://doi.org/10.1002/qua.27510","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper presents a comprehensive approach for designing polymer acceptors for organic photovoltaic applications through the generation of an extensive database and the application of machine learning (ML) techniques. Over 40 ML models are trained for the prediction of power conversion efficiency (PCE). Histgradient boosting regressor has appeared as best model. Almost 10 k polymers are generated and their PCE values are predicted. The chemical space of polymers has been visualized and analyzed. Cluster analysis revealed significant differences among the selected polymers. Additionally, an assessment of synthetic accessibility for these polymers indicated that the majority can be synthesized with relative ease.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Senthil kumar, N. Karthik, S. Sumathi, N. Siva Jyothi, S. Saranya, S. Jeyavijayan
{"title":"DFT Computation, Spectroscopic, Hirshfeld Surface, Docking and Topological Analysis on 2,2,5-Trimethyl-1,3-Dioxane-5-Carboxylic Acid as Potent Anti-Cancer Agent","authors":"J. Senthil kumar, N. Karthik, S. Sumathi, N. Siva Jyothi, S. Saranya, S. Jeyavijayan","doi":"10.1002/qua.27509","DOIUrl":"https://doi.org/10.1002/qua.27509","url":null,"abstract":"<div>\u0000 \u0000 <p>The 2,2,5-trimethyl-1,3-dioxane-5-carboxylic acid (TDCA) using both theoretical and experimental methods have been studied. The sample has been subjected to XRD, FTIR, FT-Raman, (C<sup>13</sup> and H<sup>1</sup>) NMR, and UV–vis spectrum analysis. Then, theoretical calculations have been performed at the DFT/B3LYP/6-311++G(d,p) higher based scale. The theoretical and experimental geometrical parameters and frequencies have been compared well. Theoretical and experimental NMR chemical shifts have been determined. Absorption wavelengths of UV–Vis spectrum were experimentally measured and compared with TD-DFT predictions. Detailed explanations have been given for frontier molecular orbitals, low density gradient, distribution of Mulliken charges, molecular electrostatic potential (MEP), RDG, localized orbital location, and electron localized activities. Based on the studied 2D image of the Hirschfield surfaces, H···H (65.6%) and O···H/H···O (33.6%) are found as the controlling interactions. A high binding affinity of −6.5 Kcal/mol has been calculated against 4OAR protein. These theoretical findings of the molecule may be used as an anticancer drug candidate, which helps to explain the structural stability, reactivity and anticancer potential of TDCA. High drug affinity for the TDCA has been detected by in silico ADMET prediction.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Revealing the Response of Structure and Decomposition Behaviors of 1, 1′-Azobis-1, 2, 3-Triazole to Pressure: A Theoretical Study","authors":"Zhi-Ming Guo, Xi Gang, Xian-Zhen Jia","doi":"10.1002/qua.27502","DOIUrl":"https://doi.org/10.1002/qua.27502","url":null,"abstract":"<div>\u0000 \u0000 <p>1, 1′-azobis-1, 2, 3-triazole (C<sub>4</sub>H<sub>4</sub>N<sub>8</sub>, N8) is a novel nitrogen-rich energetic material with excellent detonation performance, which has received widespread interest. Inspired by recent theories and experiments, the dependence of structural, vibrational, and electronic properties on high pressure up to 10 GPa was systematically investigated using periodic DFT calculations. It was found that the optimized structure belonged to the <i>cis</i>-N8 structure through comparing the theoretical IR with experimental IR spectra. The third-order Birch–Murnaghan equation of state for N8 was obtained up to 10 GPa, where the bulk modulus and its pressure derivative were 10.91 GPa and 7.689, respectively. More importantly, the pressure dependence of Laplacian bond order indicated that the five-membered ring opening was the first step in the decomposition process, and that high pressure could inhibit the decomposition process of N8 due to the reinforcement of non-covalent interactions. The present work could deepen the understanding of the energetic materials N8 under high pressure, and is of great significance to the blasting and detonation applications of N8.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"First-Principles Calculation of SnSe2 Material as Anode Material of Zinc Ion Battery","authors":"Ensong Zhong, Wenbo Liu","doi":"10.1002/qua.27508","DOIUrl":"https://doi.org/10.1002/qua.27508","url":null,"abstract":"<div>\u0000 \u0000 <p>The development of high-performance ion battery anode materials is conducive to the rapid development of urban rail transit. Based on first-principles calculations, this paper studies the potential performance of the recently discovered two-dimensional material SnSe<sub>2</sub> as a negative electrode for zinc ion batteries. By calculating the adsorption energy, the most stable adsorption configuration of Zn was determined. The band gap of intrinsic SnSe<sub>2</sub> decreases after strain, which promotes the transition of carriers. The band gap opens after the strain occurs in the Zn adsorbed SnSe<sub>2</sub> system (Zn-SnSe<sub>2</sub>), which confirms the regulation of strain on the band gap. The lowest diffusion barrier of Zn is 0.083 eV. The theoretical zinc storage capacity is calculated to be 387.550 mAh/g. The calculation results provide theoretical parameters for the application of SnSe<sub>2</sub> in ion batteries.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shannon Wavelet-Based Approximation Scheme for Information Entropy Integrals in Confined Domain","authors":"Sayan Banik","doi":"10.1002/qua.27496","DOIUrl":"https://doi.org/10.1002/qua.27496","url":null,"abstract":"<div>\u0000 \u0000 <p>In this work, the author attempted to develop a Shannon wavelet-based numerical scheme to approximate the information entropies in both configuration and momentum space corresponding to the ground and adjacent excited energy states of one-dimensional Schrödinger equation appearing in non-relativistic quantum mechanics. The development of this scheme is based on the judicious use of sinc scale functions as an approximation basis and a suitable numerical quadrature to approximate entropies in position and momentum spaces. Priori and posteriori errors appearing in the approximations of wave functions and entropy integrals have been discussed. The scheme (coded in Python) has been subsequently exercised for various exactly solvable and quasi-exactly solvable non-relativistic quantum mechanical models in confined domain.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Simulation and Impact of Solvent-Based Analysis of 2-Methoxy-4-Allylphenol (Eugenol) Targeting Progesterone Receptor for Breast Cancer Therapy","authors":"Karthick Arumugam, Azar Zochedh, Kaliraj Chandran, Asath Bahadur Sultan, Thandavarayan Kathiresan","doi":"10.1002/qua.27506","DOIUrl":"https://doi.org/10.1002/qua.27506","url":null,"abstract":"<div>\u0000 \u0000 <p>Breast cancer is a leading cause of cancer-related morbidity and mortality among women globally. It arises from the abnormal proliferation of cells within breast tissue and can manifest in several subtypes, classified by the expression of hormone receptors. The main objective of this work is to assess the effect of solvent on 2-methoxy-4-allylphenol's (2M4AP) in quantum chemical calculations and ability of 2M4AP to bind with the proteins associated with breast cancer. The non-toxic nature of 2M4AP was initially validated through drug-likeness studies and it complies with Lipinski's criteria. The optimization of 2M4AP structure was carried out in gas and liquid phase in DFT technique with B3LYP/6-311++G (d, p) level. Then the electronic spectrum was calculated in TD-DFT technique and the transition was determined to be <i>n</i> → <i>σ</i>*. The steadiness, charge dispersal and electronic properties were assessed and the band energy value was calculated to be 5.58 eV (gas) and 5.64 eV (liquid), exhibiting a stable confirmation of 2M4AP structure. Topological characteristics exhibited the intermolecular connections of 2M4AP along with electronic features. From the simulated results, the effect of solvent (water) in 2M4AP was very minimal and the structure is stable in both gas and liquid phase. Further, the docking studies, 2M4AP exhibited highest binding score of −7.3 kcal/mol with progesterone receptor, confirming the better ability of 2M4AP to react in hormone-positive breast cancer. The Ramachandran plot confirms the stability of interacted amino acids with the ligand molecule. Thus, 2M4AP can be considered as a potent candidate for treatment of breast cancer after clinical studies.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suzane Leonie Djendo Mazia, Moto Ongagna Jean, Adjieufack Abel Idrice, Daniel Lissouck, Jean Claude Ndom, Désiré Bikele Mama
{"title":"Computational Exploration of the Impact of Low-Spin and High-Spin Ground State on the Chelating Ability of Dimethylglyoxime Ligand on Dihalo Transition Metal: A QTAIM, EDA, and CDA Analysis","authors":"Suzane Leonie Djendo Mazia, Moto Ongagna Jean, Adjieufack Abel Idrice, Daniel Lissouck, Jean Claude Ndom, Désiré Bikele Mama","doi":"10.1002/qua.27495","DOIUrl":"https://doi.org/10.1002/qua.27495","url":null,"abstract":"<div>\u0000 \u0000 <p>We have explored the chelation of dimethylglyoxime ligand to divalent (nd<sup><i>x</i></sup>: <i>x</i> = 6, 7, 8) transition metal (TM) cations in two media (gas phase and water) at the B3LYP//LANL2DZ/6–311+G (d,p) and B3LYP/def2-TZVP level at lower multiplicity and higher multiplicity states. Majority of the 18 optimized halide (chloride and bromide) complexes prefer square planar configuration. The correlations discerned between the experimental structural data and their estimated counterparts demonstrate a good credibility for complexes at lower multiplicity state. The basis set superposition errors (BSSEs) estimated is very small which reflects the fact that the choice of different basis sets (B3LYP//LANL2DZ/6–311+G (d,p)) introduces a slight bias in the calculation of energies. The ADMP (atom-centered density matrix propagation) simulations in water on chloride complexes indicate the irreversible nature of these M—N dissociation in trajectory simulation process. This fact explains our exclusive focus on the examination of the [glyoxime ligand]…[MX<sub>2</sub>] interactions. In addition, the solvation of (3d and 4d) transition metal chloride complexes causes a sensitive augmentation of the metal ion affinity (MIA) with an average of 0.29 and 0.24 kcal/mol. In both multiplicity states, the topological parameters have illustrated that the M—N and M—X bonds are typical metal–ligand in both media. The average Δ<i>E</i><sub>orb</sub>/Δ<i>E</i><sub>steric</sub> ratio equal to 0.45 and 0.11 in gas phase and water, respectively, reveals the predominance of the contributions from non-covalent bonding interactions (NCI) compared to those of covalent bonding. But, the maximal value equal to 6.760 is obtained for bromide rhodium complex in water. NBO analysis in both media highlights the fact that a more pronounced ionic character is observed for the majority of the chloride complexes at both spin multiplicity states because of their higher retained charges on the metal atom. For [dimethylglyoxime]…[MX<sub>2</sub>] interaction (X = Cl and Br), the charge decomposition analysis demonstrates that the lowest value of the <i>d</i>/<i>b</i> ratio is found for the chloride platinum complex at lower multiplicity state in water. This is a proof of its strong relativistic effects.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vladimir Pomogaev, Elena Bocharnikova, Olga Tchaikovskaya, Pavel Avramov
{"title":"Phenol Photostatic Spectra and Quantum-Classical Photodynamic Deprotonation","authors":"Vladimir Pomogaev, Elena Bocharnikova, Olga Tchaikovskaya, Pavel Avramov","doi":"10.1002/qua.27504","DOIUrl":"https://doi.org/10.1002/qua.27504","url":null,"abstract":"<div>\u0000 \u0000 <p>The spectral-luminescence properties and photochemical conversions of phenol were analyzed for an isolated molecule as well as in water solvents in a continuum implicit model and explicit atomistic surroundings. This involved employing cut-edge hybrid quantum-classical methodologies to generate static optical spectra and the excited dissipative crossing potential energy curves. A combination of electronic excitations, gradient calculations, and embedding electrostatic potential fitting charges on quantum-classical molecular dynamic propagation trajectories provided statistically averaged absorption spectra. The mixed-reference spin-flip multiconfigurational linear response method based on reference triplet preprocessed in the time-dependent density-functional theory was utilized to determine conical intersections between the lowest excited and ground states, as well as two-stage transitions from the second excitation to the ground state. Non-adiabatic quantum-classical molecular dynamics defined photodissipative trajectories of excited states, their lifetimes, and crossing points through trajectory surface hopping together with the mixed-reference spin-flip and embedding electrostatic potential fitting approaches. Dyson orbitals of the extended Koopmans' theorem were applied to reveal the nature of molecular states at conical intersections and key points on photodynamic trajectories. Potential hydroxyl group cleavage predicted with conical intersections searching turns to “swift” O<span></span>H deprotonation through |π→<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>σ</mi>\u0000 <mi>OH</mi>\u0000 <mo>*</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$$ {upsigma}_{mathrm{OH}}^{ast } $$</annotation>\u0000 </semantics></math>⟩ transition along photodynamic propagations in contrast with “long” processes leading to benzene ring deformation with stable O<span></span>H bond.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naqash H. Malik, Qaiser Rafiq, Muhammad Farooq Nasir, Sikander Azam, Muhammad Tahir Khan, Gaber A. M. Mersal, Mahmoud M. Hessien
{"title":"Investigating the Optoelectronic Properties of 2-D and 3-D CaTi1−xCuxO3 as a Phosphor Materials: A Density Functional Theory Approach","authors":"Naqash H. Malik, Qaiser Rafiq, Muhammad Farooq Nasir, Sikander Azam, Muhammad Tahir Khan, Gaber A. M. Mersal, Mahmoud M. Hessien","doi":"10.1002/qua.27486","DOIUrl":"https://doi.org/10.1002/qua.27486","url":null,"abstract":"<div>\u0000 \u0000 <p>The CaTiO<sub>3</sub> has been extensively investigated as a highly promising optical material mostly for its optoelectronic properties and its function as a host for transition metals doped in the CaTiO<sub>3</sub>. Electronic and optical properties of CaTi<sub>1−x</sub>Cu<sub>x</sub>O<sub>3</sub> (2-D and 3-D) have been thoroughly analyzed using first-principles calculations based on Density Functional Theory (DFT). The calculations of these properties in both 2-D and 3-D configurations have performed by the use of generalized gradient approximation plus Hubbard (GGA + U). The electronic characteristics including the electronic band structure, partial density of states, and total density of states have been meticulously computed for CaTi<sub>1−x</sub>Cu<sub>x</sub>O<sub>3</sub> in both 2-D and 3-D. Upon analyzing the obtained results, we investigated that conduction and valence bands overlapped for both 2-D and 3-D structures revealing the metallic nature. We observed transitions mainly attributed to Cu-d, Ti-d, Ti-p, and O-p orbitals in both 2-D and 3-D configurations. Discussion delves into the significance of electronic band structure calculations in understanding optical properties. Peaks in the energy loss function are observed at 13 eV in both cases referred to the plasmon energy. Static values of the dielectric functions, extinction coefficient, reflectivity, and refraction are also computed. Our obtained results showed that the CaTi<sub>1−x</sub>Cu<sub>x</sub>O<sub>3</sub> compound in 3-D form is more apt for optoelectronic devices and UV-LED applications.</p>\u0000 </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"124 21","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}