Diksha Singh , Sushant Kumar , Pramod K. Singh , Karol Strzałkowski , Nada.A. Masmali , Grzegorz Trykowski
{"title":"Innovative photovoltaic approach: Cd1-xBexTe mixed semiconductor crystals for novel dye-sensitized solar cells","authors":"Diksha Singh , Sushant Kumar , Pramod K. Singh , Karol Strzałkowski , Nada.A. Masmali , Grzegorz Trykowski","doi":"10.1016/j.mset.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.mset.2024.04.001","url":null,"abstract":"<div><p>This paper deals with the synthesis and properties of new ternary mixed Cd1-xBexTe (cadmium beryllium telluride) crystal-based electrodes for photovoltaic cells which is a modified version of dye- sensitized solar cells. We determined the thermal stability and photovoltaic performance of the obtained devices. Cd1-xBexTe crystals are grown using the Bridgman technique at high temperatures and pressure for different compositions. Using the modified doctor blade method, we fabricated dye-sensitized solar cells (DSSC) using Cd1-xBexTe-based film as working electrodes. The mixed crystals with the highest beryllium content (10 %) and the lowest (1 %) are used. At the same time, the counter electrode and polymer electrolytes are common. Comparative studies with standard DSSC are also undertaken to compare the stability and charge mechanism. As prepared, DSSC using ternary Cd1-xBexTe showed efficiency as high as 3.11 % at 1 sun condition. The life span measurement indicated promising results, and DSSC is stable up to 720 h with a reasonable decrease in fill factor from 84 to 55.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 287-296"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000041/pdfft?md5=e380b1163f4398a00dc9eaf182ec5896&pid=1-s2.0-S2589299124000041-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient integration of photo voltaic and hydro energy technologies for sustainable power generation in rural areas: A case study","authors":"Pulkit Kumar , Harpreet Kaur Channi , Raman Kumar , Chander Prakash , Abhijit Bhowmik , Shatrudhan Pandey , Abhishek Kumar Singh , Muhammad Mahmood Ali , Manzoore Elahi M. Soudagar","doi":"10.1016/j.mset.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.mset.2024.04.002","url":null,"abstract":"<div><p>This research aims to provide an efficient and cost-effective renewable energy supply. It assesses the potential for photovoltaic (PV) and hydro energy in Pirthala, Haryana, India, using HOMER Pro® v3.14.2. A Hybrid renewable energy system (HRES) can continuously power 855 homes. The optimal HRES configuration comprises well-optimized PV modules, hydro turbines, converters, and batteries. The top four configurations were selected based on criteria such as net present cost (NPC) and cost of energy production (COE). The most effective HRES configuration involves a 3461-kW solar array, a 98.1 kW hydro turbine, 304 lithium-ion batteries of 100 kWh, and a 2785-kW converter, achieving a 100 % integration of renewable energy. This ideal HRES was thoroughly assessed regarding economic, technical, and renewable energy considerations. The results and the optimized HRES configuration can serve as a valuable reference for similar initiatives in rural areas, contributing to adopting renewable energy sources and enhancing energy access and reliability.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 297-308"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000053/pdfft?md5=6c8717936789a885b5a64ce38e187902&pid=1-s2.0-S2589299124000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140632862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dea Agnestasya Kurnia Ramadhani , Nabella Sholeha , Nanda Nafi'atul Khusna , Markus Diantoro , Arif Nur Afandi , Zurina Osman , Herlin Pujiarti
{"title":"Ag-doped TiO2 as photoanode for high performance dye sensitized solar cells","authors":"Dea Agnestasya Kurnia Ramadhani , Nabella Sholeha , Nanda Nafi'atul Khusna , Markus Diantoro , Arif Nur Afandi , Zurina Osman , Herlin Pujiarti","doi":"10.1016/j.mset.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.mset.2024.02.002","url":null,"abstract":"<div><p>Titanium dioxide (TiO<sub>2</sub>) nanoparticles are commonly used as photoanode materials in dye-sensitized solar cells (DSSC). The structure of TiO<sub>2</sub> can be modified by doping to enhance its optical and electrical performance. The modification carried out in this research was by providing Ag doping on TiO<sub>2</sub>. Silver (Ag) added to TiO<sub>2</sub> is convinced to reduce the recombination and increase the energy level of the photo-excited electrons from the TiO<sub>2</sub> conduction band. Ag-doped TiO<sub>2</sub> was carried out by a simple mixing method. The microstructure of Ag-doped TiO<sub>2</sub> was successfully characterized by XRD and SEM. The absorbance of the Ag-doped TiO<sub>2</sub> thin films was measured by UV–Vis spectroscopy, confirming the optimum energy gap of 3.09 eV and resulting in the best PCE of 6.31 %.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 274-281"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000028/pdfft?md5=e1818aa79e6ea6cb9290f3f38acdc276&pid=1-s2.0-S2589299124000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the performance of vertical MoS2 nanoflakes as a photoelectrochemical studies for energy application","authors":"K. Kaviyarasu , J. Madhavan","doi":"10.1016/j.mset.2023.12.003","DOIUrl":"https://doi.org/10.1016/j.mset.2023.12.003","url":null,"abstract":"<div><p>With the help of a hydrothermal process, we were able to prepare vertically layered MoS<sub>2</sub> nanoflakes that were rooted to TiO<sub>2</sub> modified. MoS<sub>2</sub> nanoflakes and TiO<sub>2</sub> contribute significantly to the strong XRD peaks and μ-Raman spectroscopy, and this phenomenon may also be explained by the unique structure of vertically stacked MoS<sub>2</sub> nanoflakes on TiO<sub>2</sub> that has many exposed edges and large surfaces as well as high electron transfer rates between TiO<sub>2</sub> and MoS<sub>2</sub>. As can be clearly seen, there are no noticeable changes in the self-photodegradation of MB under visible light interaction (VLI), and the MoS<sub>2</sub> doped TiO<sub>2</sub> photocatalyst displays ∼ 90 % degradation efficiency. By, measuring photoelectrochemically, charge carriers are separated efficiently. These experiments illustrate the transient photocurrent response of the MoS<sub>2</sub> doped TiO<sub>2</sub> photocatalyst while cycling between three on/off cycles. As a result of a low recombination rate of the photoexcited charge carriers, the MoS<sub>2</sub> doped TiO<sub>2</sub> photocatalyst displays superior photocurrent response. In other words, a lower charge transfer resistance results in a faster transfer of charge between the surfaces.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 249-256"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299123000691/pdfft?md5=763847204f160863148bf2d61ea5b0b9&pid=1-s2.0-S2589299123000691-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139100533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adán de Jesús Bautista-Morantes, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, Enrique Vera-López
{"title":"Influence of structural and morphological variables on the optical and electrical response of Na-doped BFOs","authors":"Adán de Jesús Bautista-Morantes, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, Enrique Vera-López","doi":"10.1016/j.mset.2024.05.001","DOIUrl":"10.1016/j.mset.2024.05.001","url":null,"abstract":"<div><p>In this study, the influence of <em>p</em>-type doping with Na atoms on the optical bandgap and electrical conductivity of a series of bismuth ferrites (BiFeO<sub>3</sub>) synthesized by a low-cost solid-state method was evaluated. To identify the properties that influenced the bandgap and electrical response of the samples, the phase of interest was identified and quantified by X-ray diffraction (XRD), the morphological characteristics were determined by scanning electron microscopy (SEM). Structural properties were elucidated by spectroscopic techniques and finally the optical response (indirect bandgap) was measured by ultraviolet–visible spectroscopy (UV–Vis) and electrical response (conductivity) by solid-state electrochemical impedance spectroscopy (SS-IES). The results of this work demonstrated that the optical and electrical response of the series of Na-doped BiFeO<sub>3</sub> samples is dependent on at least eight structural and morphological variables (sodium ratio, purity, unit cell volume, oxygen vacancy concentration, crystalline domain size, structural microdeformations, particle size and Warburg-type resistive phenomena). Among the most relevant results, the influence of purity, intrinsic and physical defects was identified, observing a decrease of the electrical resistance and energy gap with the presence of Na.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 335-348"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299124000077/pdfft?md5=313509c093543cb723c1b48e2d213dc9&pid=1-s2.0-S2589299124000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141132628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isala Dueramae , Manunya Okhawilai , Pornnapa Kasemsiri , Hiroshi Uyama , Rio Kita
{"title":"Effect of Ti3AlC2 MAX phase on electrochemical performance of thermo-responsive copolymer electrolyte for solid state zinc-ion battery","authors":"Isala Dueramae , Manunya Okhawilai , Pornnapa Kasemsiri , Hiroshi Uyama , Rio Kita","doi":"10.1016/j.mset.2023.12.002","DOIUrl":"https://doi.org/10.1016/j.mset.2023.12.002","url":null,"abstract":"<div><p>The solid-state zinc-ion battery (ZIB) is environmentally friendly, cost effective, and extremely safe, which are essential features for alternative sustainable energy storage systems. Herein, a polymer composite electrolyte (PCE) is successfully developed through a facile solution-casting approach from a thermo-responsive copolymer-based electrolyte and layered ternary carbide (Ti<sub>3</sub>AlC<sub>2</sub>). The thermo-responsive copolymer demonstrated synergistic mechanical properties through the addition of an appropriate plasticizer and a zinc salt. This combination suggests that the material possesses thermal self-protection capabilities due to its anti-Arrhenius ionic-conducting behavior. However, parasitic reactions and dendrite formation hindered the achievement of its full potential. The incorporation of Ti<sub>3</sub>AlC<sub>2</sub> or MAX phase can mitigate the above obstacles, enhancing electrochemical performance with excellent flexibility and maintainable self-extinguishing. The solid-state ZIB benefits from the well-designed PCE with the expanding layer interspacing, delivering a remarkably high capacity (336 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>) and energy density of 242 Wh kg<sup>−1</sup>. This is achieved due to the Ti<sub>3</sub>AlC<sub>2</sub>′s ability to immobilize or entrap triflate anions via electrostatic forces. Therefore, the designed PCE is a promising step toward the development of flexible solid electrolytes in ZIBs.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 237-248"},"PeriodicalIF":0.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258929912300068X/pdfft?md5=94061e3f060e7b62920ad7f86344a9d1&pid=1-s2.0-S258929912300068X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138770195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Singhal , Thomas Sadowski , Manika Chaudhary , Rian V. Tucci , Jules Scanley , Rudra Patel , Prince Kumar Patel , Seth Gagnon , Arkid Koni , Kushagr Singhal , Peter K. LeMaire , Rakesh Kumar Sharma , Beer Pal Singh , Christine C. Broadbridge
{"title":"Optimization of manganese dioxide-multiwall carbon nanotube composite electrodes for supercapacitor applications","authors":"Rahul Singhal , Thomas Sadowski , Manika Chaudhary , Rian V. Tucci , Jules Scanley , Rudra Patel , Prince Kumar Patel , Seth Gagnon , Arkid Koni , Kushagr Singhal , Peter K. LeMaire , Rakesh Kumar Sharma , Beer Pal Singh , Christine C. Broadbridge","doi":"10.1016/j.mset.2023.12.001","DOIUrl":"10.1016/j.mset.2023.12.001","url":null,"abstract":"<div><p>Manganese dioxide-multiwall carbon nanotube (MnO<sub>2</sub>-MWCNT) nanocomposites were synthesized via one-pot synthesis method with varying concentrations of 1 mg/ml, 4 mg/ml, and 10 mg/ml MWCNT. The synthesized nanocomposites were characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM), and electrochemical measurements. The intent of studying different concentrations is, ultimately, to correlate the effect of the concentration of multiwall carbon nanotube on the electrochemical performance of the MnO<sub>2</sub>-MWCNT nanocomposites<sub>.</sub> Two primary phenomena were observed as CNT concentration increased. First, less crystalline MnO<sub>2</sub> adsorption onto individual CNTs occurred. Subsequently, CNT agglomeration became the primary feature of the nanostructures of high CNT concentration. The electrochemical studies reveal that the specific capacitance of MnO<sub>2</sub> increases from 124 F/g to 145 F/g by the addition of 1 mg/ml MWCNTs and decreases to 102 F/g for MnO<sub>2</sub>-10 mg/ml MWCNT nanocomposite.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 228-236"},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299123000678/pdfft?md5=2969f3b058d15366fef92797e7913c85&pid=1-s2.0-S2589299123000678-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138610875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmad Fauzi , Latifa Hanum Lalasari , Nofrijon Sofyan , Donanta Dhaneswara , Florentinus Firdiyono , Iwan Setiawan , Eko Sulistiyono , Agus Budi Prasetyo , Akhmad Herman Yuwono
{"title":"Exploring heterogenous TiO2 nanocrystals from natural ilmenite mineral extraction for energy application","authors":"Ahmad Fauzi , Latifa Hanum Lalasari , Nofrijon Sofyan , Donanta Dhaneswara , Florentinus Firdiyono , Iwan Setiawan , Eko Sulistiyono , Agus Budi Prasetyo , Akhmad Herman Yuwono","doi":"10.1016/j.mset.2023.11.001","DOIUrl":"10.1016/j.mset.2023.11.001","url":null,"abstract":"<div><p>The semiconductor oxide material titanium dioxide (TiO<sub>2</sub>) has a number of strategic uses, such as an antimicrobial, self-cleaning, photocatalyst, and dye-sensitized solar cell (DSSC). Despite the fact that his substance is naturally obtained from the ilmenite (FeTiO<sub>3</sub>) mineral, there have been few investigations in this field. This work produced heterogenous TiO<sub>2</sub> nanocrystals from ilmenite extraction, which were then subjected to post-hydrothermal treatment at a range of temperatures of 80, 100, 120, and 150 °C. In the present study, it was examined how temperature change affected the optical characteristics, crystal structure, and prospective integration of TiO<sub>2</sub> nanocrystals into DSSC. The obtained TiO<sub>2</sub> nanocrystals were identified as anatase phase by the X-ray diffraction analysis. As a result of raising the post-hydrothermal temperature from 80 to 150 °C, the crystallite size of heterogenous TiO<sub>2</sub> nanocrystals was successfully enhanced from 58.09 to 72.48 nm. The band gap energy (<em>E</em><sub><em>g</em></sub>) may be lowered from 2.81 to 2.65 eV by increasing the size of the crystallites. The greatest open circuit voltage (<em>V</em><sub><em>oc</em></sub>) measured by the voltage test findings was 16.80 mV. According to the study's findings, heterogenous TiO<sub>2</sub> nanocrystals synthesized from the ilmenite mineral might be used in dye-sensitized solar cell applications.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 216-227"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299123000630/pdfft?md5=fd7eb70b078fa59ad79b83174edc8d2a&pid=1-s2.0-S2589299123000630-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prabhu Azhagapillai , Karthikeyan Gopalsamy , Israa Othman , Syed Salman Ashraf , Fawzi Banat , Mohammad Abu Haija
{"title":"Photocatalytic reduction of 4-nitrophenol over eco-friendly NixCuxFe2O4 without an additional reducing agent in water","authors":"Prabhu Azhagapillai , Karthikeyan Gopalsamy , Israa Othman , Syed Salman Ashraf , Fawzi Banat , Mohammad Abu Haija","doi":"10.1016/j.mset.2023.10.004","DOIUrl":"https://doi.org/10.1016/j.mset.2023.10.004","url":null,"abstract":"<div><p>Organic pollutants such as 4-nitrophenol (4-NP) pose serious environmental extortions due to their chemical stability for which efficient catalytic materials are indispensable in treating them. In this regard, the present work involves the synthesis of two different types of ferrites (NiFe<sub>2</sub>O<sub>4</sub>, and CuFe<sub>2</sub>O<sub>4</sub>), and a combination of Ni<sub>x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> with various ratios that systemically work as efficient photocatalysts without any additional reducing agents is reported. The structural, and morphological properties of NiFe<sub>2</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, and NiCuFe<sub>2</sub>O<sub>4</sub> were characterized by XRD, FT-IR, SEM, and HRTEM techniques. Then, the catalytic role of individual ferrite catalysts was evaluated towards catalytic reduction of 4-NP under visible light. The progress dye reduction was examined via UV–vis spectrophotometry. The effect of various concentrations, and reduction time were investigated. The kinetic rate constants determined for NiFe<sub>2</sub>O<sub>4</sub>, CuFe<sub>2</sub>O<sub>4</sub>, and Ni<sub>x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> revealed that Ni and Cu in bimetallic ferrites promoted the reduction reaction under visible light. The results demonstrated that the photo-reduction efficiency of the Ni<sub>0.7</sub>Cu<sub>0.3</sub>Fe<sub>2</sub>O<sub>4</sub> catalyst over 4-NP (conc. 10 ppm) to 4-AP was determined as 82 % under 120 miniutes with good recyclability up to six cycles. The mechanism of photocatalytic reduction of ferrites without the use of a reducing agent was studied. Such facile and productive ferrite materials could be employed as efficient photocatalysts for the reduction of toxic organic contaminants in environmental treatment.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 195-204"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299123000526/pdfft?md5=45e0363b84ec761b0ded718158bb5558&pid=1-s2.0-S2589299123000526-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92014435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-covalent functionalization of surfactant-assisted graphene oxide with silver nanocomposites for highly efficient photocatalysis and anti-biofilm applications","authors":"Usan Pathinathan Saleth Prabhakar , Paramasivam Shanmugam , Supakorn Boonyuen , Lakshmi Prabha Chandrasekar , Ramyakrishna Pothu , Rajender Boddula , Ahmed Bahgat Radwan , Noora Al-Qahtani","doi":"10.1016/j.mset.2023.10.005","DOIUrl":"https://doi.org/10.1016/j.mset.2023.10.005","url":null,"abstract":"<div><p>This study presents a comprehensive investigation on the synthesis and characterization of surfactant-assisted graphene oxide non-covalent functionalized silver nanocomposites (rGS-AgNPs) for achieving remarkable photocatalytic and anti-biofilm properties. The approach involves using an anionic surfactant (sodium lauryl sulfate (SLS)), silver nitrate (AgNO<sub>3</sub>), and reduced graphene oxide (rGO) as stabilizing/reducing agents, metal precursors, and supporting materials, respectively. Different composites were prepared by varying the concentration of AgNO<sub>3</sub>, resulting in rGS-AgNPs composites with concentrations of 0.9 × 10<sup>−3</sup> mM, 1.8 × 10<sup>−3</sup> mM, and 2.7 × 10<sup>−3</sup> mM. Characterization techniques including XRD, FTIR, SEM, and TEM/EDS analysis confirmed the formation of face-centered cubic AgNPs and amorphous rGO structures. The composites exhibited a firm binding of the surfactant and AgNPs on the surface of rGO nanosheets, resulting in efficient anti-biofilm and photocatalytic activity. The size of the supported AgNPs on rGO/SL was found to be 8–10 nm. The rGS-AgNPs composites displayed significantly improved anti-biofilm and photocatalytic performance, attributed to the increased surface area of AgNPs. Moreover, the photocatalytic efficiency of the rGS-AgNPs composites reached 96.48 % within 60 min, outperforming pure AgNPs. The synthetic procedure and practical applications will be utilized for biosensors, food packing technology, biomedical and pharmaceutically valuable reactions.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 205-215"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589299123000538/pdfft?md5=2a38dfb94f65664c04c8861b19833718&pid=1-s2.0-S2589299123000538-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92014436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}