Materials Science Forum最新文献

筛选
英文 中文
Investigation of Tensile and Hardness Properties of Luffa Acutangula and Cocos Nucefera Reinforced Composite 研究丝瓜和椰子树增强复合材料的拉伸和硬度特性
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-e0aqlu
S. Sridhar, S. Nandhakumar, C. Selva Kumar
{"title":"Investigation of Tensile and Hardness Properties of Luffa Acutangula and Cocos Nucefera Reinforced Composite","authors":"S. Sridhar, S. Nandhakumar, C. Selva Kumar","doi":"10.4028/p-e0aqlu","DOIUrl":"https://doi.org/10.4028/p-e0aqlu","url":null,"abstract":"The superior mechanical properties like weight proportion, rigidity and low warm development gives a cutting edge advantage over ordinary materials. Also, composite materials bended with polymers are gaining lingering applications. Because of high quality, light weight and biodegrading properties, the use of natural fibres are of interest. In this research article an investigation has been carried out to find out an alternative material for glass fibre reinforced composite. Mechanical properties like rigidity and hardness of natural fibres cocos nucefera and luffa acutangula were estimated and compared with traditional glass fibre strengthened polymer composites. The results are promising and can be used for as a replacement for traditionally available glass fibre reinforced polymer composite.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Performance Behaviour of Fibre Reinfored Foam Concrete 纤维增强泡沫混凝土性能行为研究
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-dx5xwt
Ayyanar Dhanalakshmi, M. S. Shahul Hameed, J. Jeyaseela, S. Karthika
{"title":"Study on the Performance Behaviour of Fibre Reinfored Foam Concrete","authors":"Ayyanar Dhanalakshmi, M. S. Shahul Hameed, J. Jeyaseela, S. Karthika","doi":"10.4028/p-dx5xwt","DOIUrl":"https://doi.org/10.4028/p-dx5xwt","url":null,"abstract":"In the construction sector, concrete is indispensable. Non-structural uses account for a significant portion of concrete production. Foamed concrete (FC) is incredibly porous, and as the number of voids increases, the material's thermal characteristics decrease. Since these uses need a substantial amount of concrete, researching them might yield useful information for optimizing concrete's material efficiency and making better use of its waste products. FC is excellent in compression but poor in tension because it creates multiple microcracks. FC cannot withstand the tensile stress induced by the applied forces without additional reinforcement elements. Hence, this research investigates the mechanical properties of polypropylene (PP) fibers based foam concrete. The utilization of effective materials such as cement, flyash, silica fume and PP fibre were used in this investigation. In this study, a novel invention is proposed for designing and strength prediction of foam concrete and find out the strength properties such as compressive strength, split tensile strength and flexural strength of fibre reinforced foam concrete were determined and the experimental and predictive value of compressive strength were also determined with the help of python. The results provide a clear idea of ​​the efficient use of fly ash and silica fume for the manufacture of light weight based products that promote profitability, sustainability and entrepreneurship for youth in developing countries such as India, and it is important by conserving natural resources through savings in the consumption of cement and aggregates.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 46","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Experimental Investigation on the Bacterial Concrete as an Innovative Approach to Self Crack Healing System 细菌混凝土作为自裂缝愈合系统创新方法的实验研究
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-4wgyud
Mugil Vettrivelou, B. Vijaya, M. Aruljothi, Gokulakrishnan Janarthanan
{"title":"An Experimental Investigation on the Bacterial Concrete as an Innovative Approach to Self Crack Healing System","authors":"Mugil Vettrivelou, B. Vijaya, M. Aruljothi, Gokulakrishnan Janarthanan","doi":"10.4028/p-4wgyud","DOIUrl":"https://doi.org/10.4028/p-4wgyud","url":null,"abstract":"Concrete structure are subjected to cracks and it is one of the immanent frailties of concrete thus reduces the life of concrete structure thereby results in high replacement cost. The study was inspired by the technique to find a remedy for cracking using bacteria namely Bacillus subtilis and Bacillus cereus on filling the voids, and the compressive strength, split tensile strength and flexural strength of bacterial impregnated concrete are compared with conventional concrete. The evaluated results of strength revealed that the use of bacteria in combination showed better improvement and SEM, XRD analysis showed that the material growth, increased calcite crystalline when compared to conventional concrete.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Properties on Concrete by Replacing Fine Aggregate with Glass Waste Particles: An Experimental Study 用玻璃废料颗粒替代细骨料对混凝土力学性能的影响:实验研究
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-fu4ohk
C. Karthik, S. Suresh
{"title":"Mechanical Properties on Concrete by Replacing Fine Aggregate with Glass Waste Particles: An Experimental Study","authors":"C. Karthik, S. Suresh","doi":"10.4028/p-fu4ohk","DOIUrl":"https://doi.org/10.4028/p-fu4ohk","url":null,"abstract":"Glass wastes are generated by various sectors is creating an environmental issue in our country. The reuse and recycling of Glass Waste Particles (GWP) is a way to reduce the environmental issues, cost of waste management and create sustainable environment. Construction industry is consumed major natural resources by the way of utilizing raw materials particularly making a concrete. The main aim of this experimental investigation is to obtain mechanical properties on concrete by replacing fine aggregate with GWP. In this study, fine aggregate was replaced with GWP from 0% to 40% in the interval of 10%. Based on the test results on concrete by replacement of fine aggregate in its weight of GWP were discussed in terms of compressive, split tensile and flexural strengths. Replacement level of GWP more than 30% produces lower strength. The replacement level of GWP between 20% and 30% in conventional mix may suit at construction industry. However, durability studies are required to study the long-term effect on concrete by replacing fine aggregate with GWP.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensile and Flexural Performance of Hybrid FDM and Compression Moulded PLA/Basalt Biocomposite 混合 FDM 和压缩成型聚乳酸/钴生物复合材料的拉伸和挠曲性能
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-duyo7m
Mirza Faizaan, Satish Shenoy, Chandrakant R. Kini
{"title":"Tensile and Flexural Performance of Hybrid FDM and Compression Moulded PLA/Basalt Biocomposite","authors":"Mirza Faizaan, Satish Shenoy, Chandrakant R. Kini","doi":"10.4028/p-duyo7m","DOIUrl":"https://doi.org/10.4028/p-duyo7m","url":null,"abstract":"Emerging trends in extrusion-based additive manufacturing (AM) focus on improving the mechanical performance of pristine polymers with high strength reinforcing materials. Prominent reviews have indicated a heavy dependence on PLA polymer for fused deposition Modeling (FDM) based studies. To promote biodegradability, the effect of natural fibres as reinforcement has been widely researched in the literature. However, it is noted that discontinuous natural fibre reinforcement yields negative or negligible improvement in the strength and modulus of FDM-based biocomposites. Hence, an attempt to hybridise FDM with a conventional composite manufacturing method was made in this study by cladding natural fibre reinforcement over FDM-based polymer. Tensile and flexural test coupons were additively manufactured by FDM and reinforced with a skin of bi-directional woven basalt fibre through compression moulding. A 90% improvement in tensile strength and a similar significant increase in flexural strength was observed. Further, an average increment of 46.38% and 237.24% in tensile and flexural modulus, respectively, was achieved through this manufacturing technique. In conclusion, a drastic improvement in mechanical performance can be obtained through the hybridisation of manufacturing methods and needs further investigation towards the compatibility of adhesive materials with FDM polymers.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140686125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Mechanical Analysis of Graphene Oxide/ Low Density Polyethylene Nanocomposite 氧化石墨烯/低密度聚乙烯纳米复合材料的动态力学分析
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-rtig7j
Prasad Neena
{"title":"Dynamic Mechanical Analysis of Graphene Oxide/ Low Density Polyethylene Nanocomposite","authors":"Prasad Neena","doi":"10.4028/p-rtig7j","DOIUrl":"https://doi.org/10.4028/p-rtig7j","url":null,"abstract":"The global scientific community for the last three decades focuses mainly on polymer-based nanocomposites due to their ease of fabrication, flexibility, and above all easiness to handle them. Among the polymer materials, polyethylene got the attraction because of its readiness to be combined with most of the filler materials available in natural form as well as newly synthesized ones. The present study focuses on the synthesis of nanocomposites of Low-density polyethylene (LDPE) with graphene oxide nanoparticles as the filler. The graphene oxide nanoparticles are synthesized using a modified Hummers method. The composites are prepared by varying the amount of graphene oxide nanoparticles in the LDPE matrix using the melt extrusion method. The nanocomposites prepared were found to have good mechanical properties compared to the virgin LDPE material. The Dynamic Mechanic Analysis (DMA) confirmed that the quantity of the graphene oxide nanoparticles has a major role in the viscoelastic behaviour of the composites.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140685986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Friction Conditions and Structural Refining on the Tribological Behavior of Titanium 摩擦条件和结构细化对钛摩擦学行为的影响
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-u4rnyn
V. Stolyarov
{"title":"Influence of Friction Conditions and Structural Refining on the Tribological Behavior of Titanium","authors":"V. Stolyarov","doi":"10.4028/p-u4rnyn","DOIUrl":"https://doi.org/10.4028/p-u4rnyn","url":null,"abstract":"Titanium and its alloys have a wide range of applications in various industries, including medicine. However, the low strength and high friction coefficient hinder their development in contact friction due to fretting fatigue. Among many factors, structure refinement, temperature and amplitude are the most responsible for fretting wear of structural materials. The purpose of the article is to investigate the effect of displacement amplitude, size of grain and test temperature on the fretting wear of the pure titanium in coarse-grained and ultrafine-grained states. It is shown that an increase in the test temperature for both structural states leads to a multiple increase in wear. Structural refinement of titanium to hundreds of nanometers helps to reduce wear at room and elevated temperatures.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140688790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Alumina, Ferric Oxide, and Mn as Composites on the Properties of Recycled Aluminium Alloy 氧化铝、氧化铁和锰复合材料对再生铝合金性能的影响
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-2mx1qi
P. Srinath, C. Bhagyanathan, Gottmyers Melwyn J., G. Sathiya Seelan, C. Santhosh Kumar
{"title":"Influence of Alumina, Ferric Oxide, and Mn as Composites on the Properties of Recycled Aluminium Alloy","authors":"P. Srinath, C. Bhagyanathan, Gottmyers Melwyn J., G. Sathiya Seelan, C. Santhosh Kumar","doi":"10.4028/p-2mx1qi","DOIUrl":"https://doi.org/10.4028/p-2mx1qi","url":null,"abstract":"Recycling of aluminium alloys is gaining significant attention due to its economic and environmental benefits. However, close loop recycled aluminium alloys can be adversely affected by impurities and alloying elements present in the recycled feedstock. In this study, the influence of three composites, namely alumina (Al2O3), ferric oxide (Fe2O3), and manganese (Mn), on the properties of recycled aluminium taldon scraps was investigated to enhance the tensile behaviour of the alloys. The effects of these composites on the mechanical properties, microstructure, and corrosion behaviour of the recycled aluminium alloys were evaluated through experimental characterization techniques. The results showed that the addition of these composites had a significant influence on the properties of recycled aluminium alloys, providing insights into the potential for improving the performance of recycled aluminium alloys through composite additions. The addition of Al2O3 enhanced the tensile strength by 44.18 % and the variation can be attributed to the strengthening of the dendritic zones by the formation of α-Al.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Combined Internal Structure on Mechanical Properties of FDM 3D Printed Parts 组合内部结构对 FDM 3D 打印部件机械性能的影响
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-wgqyy2
R. Karthikeyan, V.P. Pradeep, S. Rajkumar, K. Gobinath
{"title":"Effect of Combined Internal Structure on Mechanical Properties of FDM 3D Printed Parts","authors":"R. Karthikeyan, V.P. Pradeep, S. Rajkumar, K. Gobinath","doi":"10.4028/p-wgqyy2","DOIUrl":"https://doi.org/10.4028/p-wgqyy2","url":null,"abstract":"Commercial and industrial use of 3D printing has swiftly taken off as a versatile and effective method of manufacturing on both a small and large scale. Despite being adaptable, the procedure currently works with a restricted number of materials, mostly thermoplastic polymers. 3D printing fused deposition modeling (FDM) provides opportunities to produce complex components relatively quickly in small batch with a high degree of flexibility for both manufacturer and researcher. Process parameters in FDM like infill pattern, infill density, printing speed, raster angle influences the mechanical properties of a printed parts. In this research study, a novel approach on the internal structure of 3D printed parts say combined infill pattern (Triangles & Octet) on a single part has been introduced and mechanical properties like tensile test, flexural strength, compression strength and hardness were measured. Specimens were printed in Acrylonitrile butadiene styrene (ABS) as per ASTM standards by FDM technology with different infill densities of 60%, 80% and 100% by XY build orientation. SEM analysis was made to analyze the morphological and inter bonding of different infill patterns. The results show that mechanical performance was inflated by an increase in infill density.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140688907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Brake Pad Using Palm Kernel Shell Reinforcement Polymer Composite 使用棕榈仁壳增强聚合物复合材料开发刹车片
Materials Science Forum Pub Date : 2024-04-18 DOI: 10.4028/p-ygf9ir
V.P. Pradeep, R. Karthikeyan, S. Rajkumar, K. Gobinath
{"title":"Development of Brake Pad Using Palm Kernel Shell Reinforcement Polymer Composite","authors":"V.P. Pradeep, R. Karthikeyan, S. Rajkumar, K. Gobinath","doi":"10.4028/p-ygf9ir","DOIUrl":"https://doi.org/10.4028/p-ygf9ir","url":null,"abstract":"Asbestos-based brake shoes are being faded out due to worries that they may cause cancer; as a result, research for suitable replacements is an essential area of focus. Research on agricultural by - products such as flax fibres, rockwool, aramid fibres, banana fibres, and nut shells from palm trees have been used to develop a number of potential replacements for asbestos. Palm wastes, which are picked for the study since there was a paucity of previous research on the topic, are obtained from agricultural waste fibres. As part of this investigation, a composite material was created, and a number of tests were carried out in order to investigate the wear and durability of a set of unique composites. The novel composites contained 20% epoxy resins, 10 % carbon, 15% CaCO3, 30–45% PKS, and 10–25%Al2O3 respectively. The results obtained showed that the finer the sieve size the better the properties.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信