Material Science Research India最新文献

筛选
英文 中文
Experimental and Theoretical Studies on the Molecular Structure, FT-IR, NMR, HOMO, LUMO, MESP, and Reactivity Descriptors of (E)-1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (E)-1-(2,3-二氢苯并[b][1,4]二恶英-6-基)-3-(3,4,5-三甲氧基苯基)丙-2-烯-1- 1的分子结构、FT-IR、NMR、HOMO、LUMO、MESP和反应性描述子的实验与理论研究
Material Science Research India Pub Date : 2020-07-30 DOI: 10.13005/msri.17.special-issue1.07
Rahul Ashok Shinde, Vishnu A shok Adole, Bapu Sonu Jagdale, Thansing Bhavsing Pawar
{"title":"Experimental and Theoretical Studies on the Molecular Structure, FT-IR, NMR, HOMO, LUMO, MESP, and Reactivity Descriptors of (E)-1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one","authors":"Rahul Ashok Shinde, Vishnu A shok Adole, Bapu Sonu Jagdale, Thansing Bhavsing Pawar","doi":"10.13005/msri.17.special-issue1.07","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.07","url":null,"abstract":"The present research deals with the synthesis, characterization and density functional theory (DFT) study of (E)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (DTMPP). For the computational investigation, DFT method at B3LYP/6-311++G(d,p) basis set has been used. Herein, structural properties like molecular structure, bond lengths, and bond angles of the DTMPP have been explored. The all-important examination of the electronic properties; HOMO and LUMO energies were studied by the time-dependent DFT (TD-DFT) method. The experimental and theoretical spectroscopic Investigation on FT-IR, 1HNMR, 13C NMR has been unveiled in the present research. To study the chemical behaviour of the DTMPP, Mulliken atomic charges, molecular electrostatic surface potential, and reactivity descriptors have been explored. The dipole moment of the DTMPP is 1.27 Debye with C1 point group symmetry and -1225.77 a.u. E(B3LYP) energy. The most electropositive carbon and hydrogen atoms in the DTMPP are C14 and H27 respectively. The C1-C6 bond is the longest (1.4089 Å) C=C bond in the DTMPP. The oxygen atom O33 is having short contact interaction with the hydrogen atom H44 with a distance of 3.3258 Å. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The FT-IR assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using DFT method. Furthermore, some valuable insights on thermochemical data are obtained using the harmonic frequencies at same basis set.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"13 1","pages":"54-72"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75256330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Computational Insights on Molecular Structure, Electronic Properties, and Chemical Reactivity of (E)-3-(4-Chlorophenyl)-1-(2-Hydroxyphenyl)Prop-2-en-1-one (E)-3-(4-氯苯基)-1-(2-羟基苯基)Prop-2-en-1-one的分子结构、电子性质和化学反应性的计算见解
Material Science Research India Pub Date : 2020-07-30 DOI: 10.13005/msri.17.special-issue1.06
Vishnu A. Adole, Prashant B. Koli, Rahul A. Shinde, Rohit S. Shinde
{"title":"Computational Insights on Molecular Structure, Electronic Properties, and Chemical Reactivity of (E)-3-(4-Chlorophenyl)-1-(2-Hydroxyphenyl)Prop-2-en-1-one","authors":"Vishnu A. Adole, Prashant B. Koli, Rahul A. Shinde, Rohit S. Shinde","doi":"10.13005/msri.17.special-issue1.06","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.06","url":null,"abstract":"In the current examination, (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been studied to investigate geometrical entities, electronic properties, and chemical reactivity viewpoints. To inspect structural, spectroscopic, and chemical reactivity aspects, density functional theory method (DFT) at B3LYP/6-311G(d,p) basis set has been employed. The (E)-3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one has been synthesized and characterized by FT-IR, 1HNMR, and 13C NMR spectral techniques. The detailed investigation of bond lengths and bond angles is discussed to comprehend the geometrical framework. To explore its chemical behaviour, Mulliken atomic charges, molecular electrostatic potential surface, and electronic parameters are introduced. The imperative exploration of the electronic properties, such as HOMO and LUMO energies, was studied by the time-dependent DFT (TD-DFT) method. The dipole moment of the title molecule is 2.57 Debye with C1 point group symmetry. The most electropositive carbon and hydrogen atoms in the title molecule are C14 and H27 respectively. Amongst aromatic C=C, the C16-C18 is the longest, and C17-C19 is the shortest bond. The molecular electrostatic potential plot predicts the positive electrostatic potential is around hydrogen atoms. The vibrational assignments were made by comparing the experimental FT-IR absorption peaks with the scaled frequencies obtained using computational work. Besides, some significant thermochemical information is obtained using the same basis set using frequencies.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"29 1","pages":"41-53"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81468651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Computational Methods in Material Science-Editorial 材料科学中的计算方法
Material Science Research India Pub Date : 2020-07-30 DOI: 10.13005/msri.17.special-issue1.01
S. Mahmood
{"title":"Computational Methods in Material Science-Editorial","authors":"S. Mahmood","doi":"10.13005/msri.17.special-issue1.01","DOIUrl":"https://doi.org/10.13005/msri.17.special-issue1.01","url":null,"abstract":"he current revolution in Materials Science leading to vast advances in pre-existing and emerging technologies had significantly impacted all aspects of our modern life. The continuous efforts in searching for new functional and smart materials facilitated the design of miniaturized and more efficient devices, and led to great advancements in pharmaceutical, medicinal, agricultural, energy related industries, and many more. Before employment in a given application, a newly developed material needs to be fully characterized and tested for efficient delivery and fulfillment of industrial and technological requirements.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"7 1","pages":"01-02"},"PeriodicalIF":0.0,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74405857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Zinc Versus Magnesium as Biodegradable Metals for Temporary Implants 锌与镁作为生物可降解金属用于临时植入物
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/MSRI/170101
M. Gupta
{"title":"Zinc Versus Magnesium as Biodegradable Metals for Temporary Implants","authors":"M. Gupta","doi":"10.13005/MSRI/170101","DOIUrl":"https://doi.org/10.13005/MSRI/170101","url":null,"abstract":"Opening Remarks Extensive research efforts are ongoing to develop materials that can be used as temporary implants in the human body to perform multiple functions depending on the nature of ailment. Among the metals, zinc and magnesium based materials have garnered significant attention in recent years to serve as temporary implants. This article aims to provide a snapshot of their merits and demerits and accordingly the challenges faced by material scientists.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"111 1","pages":"01-04"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89624449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Superconductivity – Surprises and Stories 超导-惊喜和故事
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/MSRI/170102
U. De
{"title":"Superconductivity – Surprises and Stories","authors":"U. De","doi":"10.13005/MSRI/170102","DOIUrl":"https://doi.org/10.13005/MSRI/170102","url":null,"abstract":"","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"17 1","pages":"05-07"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87017687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CNT-Ni-Co-O based composite for Supercapacitor applications by Cyclic Voltametry analysis: A Short Quick Glimpse CNT-Ni-Co-O基复合材料用于超级电容器的循环伏安分析:简短的快速一瞥
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/MSRI/170104
S. Mukherjee
{"title":"CNT-Ni-Co-O based composite for Supercapacitor applications by Cyclic Voltametry analysis: A Short Quick Glimpse","authors":"S. Mukherjee","doi":"10.13005/MSRI/170104","DOIUrl":"https://doi.org/10.13005/MSRI/170104","url":null,"abstract":"CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 16-24 CONTACT Soumya Mukherjee smmukherjee3@gmail.com Department of Metallurgical Engineering, School of Mines & Metallurgy, Kazi Nazrul University, 713340, Asansol, India. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170104 Article History Received: 31-Jan-2020 Accepted: 1-April-2020","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"224 1","pages":"16-24"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75566167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatorenal Effects of Silver Nanoparticles in In-Vivo Postnatal Model of Toxicity and in HepG2 Cell Line 银纳米颗粒在体内毒性模型和HepG2细胞系中的肝肾作用
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/msri/170108
M. Elalfy, Mamdouh M Abouelmagd, Eman A. Abdelraheem, M. El-hadidy
{"title":"Hepatorenal Effects of Silver Nanoparticles in In-Vivo Postnatal Model of Toxicity and in HepG2 Cell Line","authors":"M. Elalfy, Mamdouh M Abouelmagd, Eman A. Abdelraheem, M. El-hadidy","doi":"10.13005/msri/170108","DOIUrl":"https://doi.org/10.13005/msri/170108","url":null,"abstract":"Silver nanoparticles (Ag-NPs) had many uses in medicine, household and industry. To better understand the postnatal toxicity of Ag-NPs in lactating female rats and its offspring’s, 18 female rats after delivery were divided into three groups and dams received orally the AGNPs at doses of 0, 50, 100 ppm daily for 21 days. After the end of treatment, all rats were euthanized and blood and tissues were separated for evaluation of biochemical and histopathology in dams and its pups. The Ag-NPs had no effect on the dam's weight while the reduction of rats’ pups weight was noticed after first week only after the treatment. Notably, Ag-NPs had toxic effects in rat’s pups, as well as its dam with evidence of elevation of liver enzymes, urea, creatinine and reduction of serum protein, albumin and globulin and considered the first report explained the toxicity in the rat’s pups. Moreover, rats' pups revealed histopathological changes in liver and kidney as well as its dams. Notably, the nano-silver is considered cytotoxic for HepG2 cell line as well as mouse liver cell line. In conclusions, the Ag-NPs considered toxic in offspring as well as dams and had immunosuppressive effects in the postnatal model of toxicity as well as cytotoxicity to hepatic cells lines. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 54-61 CONTACT Mahmoud M. Elalfy mahmoudelalfy@mans.edu.eg Forensic and toxicology department, faculty of veterinary medicine, Mansoura University, Egypt. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170108 Article History Received: 01 April 2020 Accepted: 30 April 2020","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"39 1","pages":"54-61"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75450621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Tensile Properties and Fracture Morphology of Polyethylene Terephthalate Mixed Rice Starch Particle Based Blend Composites 聚对苯二甲酸乙二醇酯混合大米淀粉颗粒基共混复合材料的拉伸性能和断裂形貌
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/msri/170107
Sumarji Sumarji, Mochamad Gerindo Dwi Aqsho, H. Basuki, M. Asrofi
{"title":"Tensile Properties and Fracture Morphology of Polyethylene Terephthalate Mixed Rice Starch Particle Based Blend Composites","authors":"Sumarji Sumarji, Mochamad Gerindo Dwi Aqsho, H. Basuki, M. Asrofi","doi":"10.13005/msri/170107","DOIUrl":"https://doi.org/10.13005/msri/170107","url":null,"abstract":"This study examines the effect of addition rice starch particle (RSP) in Polyethylene terephthalate (PET) based blend composites. The concentration of RSP in PET was varied at 0, 5, 10, 15 and 20 wt% with fixed percentage of sorbitol for 2 ml. The blend composites were produced by solution mixing method. All samples were tested by tensile and morphological observation after tensile test. The tensile test proves that the addition of RSP in PET increased tensile strength of blend composites. The maximum tensile strength was in 15 wt% RSP in PET for 9.79 MPa. Optical microscope displays minimum porosity with good fusion between RSP and PET. The addition of starch in polymer is suggested to reduce the percentage of using non-biodegradable polymer plastic. This research is important due to the development of biodegradable polymer. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 47-53 CONTACT Mochamad Asrofia asrofi.teknik@unej.ac.id Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170107 Article History Received: 2 April 2020 Accepted: 30 April 2020","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"2 1","pages":"47-53"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85423639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effect of Humidity on Electrical Conductivity of Graphite Nanocomposite Based Electrodes: A Review 湿度对石墨纳米复合材料电极导电性的影响
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/msri/170103
S. Mahtab, Pragati S. Joshi, B. Arya, M. Zaidi, T. I. Siddiqui
{"title":"Effect of Humidity on Electrical Conductivity of Graphite Nanocomposite Based Electrodes: A Review","authors":"S. Mahtab, Pragati S. Joshi, B. Arya, M. Zaidi, T. I. Siddiqui","doi":"10.13005/msri/170103","DOIUrl":"https://doi.org/10.13005/msri/170103","url":null,"abstract":"We have reviewed recent progress on various types of humidity sensors as it is one of the most significant issues in various areas of sensing appliances such as instrumentation, charge storage automated systems, industries and agriculture. Various effective approaches have been discussed to develop ceramic, semiconducting and polymer based graphite sensors. It was found that graphite based nanocomposite materials have unique potential for detecting humidity due to specific structure, high electro thermal conductivities, good mechanical properties, low cost and ultrahigh surface area that increases applications in the field of energy storage devices. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 08-15 CONTACT M.G.H. Zaidia mghzaidi@gmail.com Department of Chemistry, G.B. Pant University of Agriculture & Technology,","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"04 1","pages":"08-15"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86110591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Tunnelling Current Measurements Using Current Sensing Atomic Force Microscope 利用电流传感原子力显微镜测量隧道电流
Material Science Research India Pub Date : 2020-04-30 DOI: 10.13005/MSRI/170109
Arup Sarkar, K. A. Suresh
{"title":"Tunnelling Current Measurements Using Current Sensing Atomic Force Microscope","authors":"Arup Sarkar, K. A. Suresh","doi":"10.13005/MSRI/170109","DOIUrl":"https://doi.org/10.13005/MSRI/170109","url":null,"abstract":"To realise the miniaturised devices, the precise measurement of nanoscale tunnelling current in ultrathin films is of utmost importance. For the nanoscale current measurements, current sensing atomic force microscope (CSAFM) is one of the most powerful tool. CSAFM allows to map the current distribution on the film surface and it permits to perform current measurements as a function of applied bias voltage. It has turned out to be crucial for studies of organic films. In CSAFM, a physical contact is made on film with a precise control of the applied force in nanonewton (nN) range. For the preparation of ultrathin film, Langmuir-Blodgett (LB) technique is known to provide a uniform film with a good control over the thickness in the molecular level. In the last two decades, there have been many CSAFM studies for the tunnelling current measurements. This review is intended to cover the literature on the tunnelling current measurements using CSAFM. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 62-69 CONTACT Arup Sarkar arupsarkar.katwa@gmail.com Department of Physics, Indian Institute of Science Education & Research, Berhampur 760010, Odisha, India. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170109 Article History Received: 15 March 2020 Accepted: 10 April 2020","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"25 1","pages":"62-69"},"PeriodicalIF":0.0,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80839979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信