S. Mukherjee
{"title":"CNT-Ni-Co-O基复合材料用于超级电容器的循环伏安分析:简短的快速一瞥","authors":"S. Mukherjee","doi":"10.13005/MSRI/170104","DOIUrl":null,"url":null,"abstract":"CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 16-24 CONTACT Soumya Mukherjee smmukherjee3@gmail.com Department of Metallurgical Engineering, School of Mines & Metallurgy, Kazi Nazrul University, 713340, Asansol, India. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170104 Article History Received: 31-Jan-2020 Accepted: 1-April-2020","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"224 1","pages":"16-24"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CNT-Ni-Co-O based composite for Supercapacitor applications by Cyclic Voltametry analysis: A Short Quick Glimpse\",\"authors\":\"S. Mukherjee\",\"doi\":\"10.13005/MSRI/170104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 16-24 CONTACT Soumya Mukherjee smmukherjee3@gmail.com Department of Metallurgical Engineering, School of Mines & Metallurgy, Kazi Nazrul University, 713340, Asansol, India. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170104 Article History Received: 31-Jan-2020 Accepted: 1-April-2020\",\"PeriodicalId\":18247,\"journal\":{\"name\":\"Material Science Research India\",\"volume\":\"224 1\",\"pages\":\"16-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Material Science Research India\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13005/MSRI/170104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/MSRI/170104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
CNT-Ni-Co-O based composite for Supercapacitor applications by Cyclic Voltametry analysis: A Short Quick Glimpse
CNT based material are of vital importance in modern technology for their superior physical and chemical properties. In recent times, materials development for energy applications is focused for improvement of battery, capacitors, and electrodes for enhanced efficiency. High performance Supercapacitors with high energy densities are at the leading edge for renewable energy engineering device sector. CNT based Ni-Co-O material is of keen interest due to its possible applications as supercapacitors, electrocatalyst for metal/air battery and others. The hybrid material synthesis, morphological and electrochemical features are vital to evaluate the material performances for energy applications. Electrical studies are also important to evaluate the properties required for device applications. CNT is used as electrode material for electrochemical storage due to superior chemical stability, low mass density, low resistivity and large surface area. CNT replaces activated carbon material as supercapacitor due to improper balance between enhanced surface area and mesoporosity thus limiting electrolytic accessibility and capacitance. In the present article a brief review is stressed forward for the development of CNT-Ni-Co-O based hybrid material for supercapacitor high energy density applications. Material Science Research India www.materialsciencejournal.org ISSN: 0973-3469, Vol.17, No.(1) 2020, Pg. 16-24 CONTACT Soumya Mukherjee smmukherjee3@gmail.com Department of Metallurgical Engineering, School of Mines & Metallurgy, Kazi Nazrul University, 713340, Asansol, India. © 2020 The Author(s). Published by Oriental Scientific Publishing Company This is an Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License Doi: http://dx.doi.org/10.13005/msri/170104 Article History Received: 31-Jan-2020 Accepted: 1-April-2020