Christopher R. Farrow, Loong‐Tak Lim, Josef D. Ackerman
{"title":"Propagules go with the flow: Near‐field particle dispersion in reaches with different hydrodynamic conditions","authors":"Christopher R. Farrow, Loong‐Tak Lim, Josef D. Ackerman","doi":"10.1002/lno.12760","DOIUrl":"https://doi.org/10.1002/lno.12760","url":null,"abstract":"We examined the effects of riverbed roughness and turbulence (shear velocity, ) on propagule dispersion in the near‐field region (< 100 m) by releasing microbead models of larval and juvenile unionid mussels in tributaries of the Grand River (Ontario, Canada). The Conestogo River had the roughest bed and highest mean , followed by the Grand and Speed rivers. We predicted more downstream transport with higher velocities and that longitudinal dispersion coefficients (<jats:italic>K</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub>) would match the patterns in roughness and . The Conestogo River had the highest downstream particle flux and <jats:italic>K</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub> as predicted by simple empirical equations. Inconsistent with model predictions, however, the Grand River had the lowest particle flux and <jats:italic>K</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub>. These differences were greater than expected based on the small differences in reach‐averaged mean velocities between the Grand and Conestogo rivers. This mismatch between <jats:italic>K</jats:italic><jats:sub><jats:italic>x</jats:italic></jats:sub> predicted by simple empirical models and those fit to an advection–diffusion model was related to the inertial properties of the flow in the advective zone (i.e., near field) of the reaches. Streamwise, lateral, and especially vertical velocities at drift nets were spatially heterogeneous within and among reaches, demonstrating the influence of the flow direction on particle flux. Although bulk fluid statistics provided a useful indication of how dispersal distances vary among rivers, our results suggest that near‐field dynamics can be complex, requiring high‐resolution bathymetry and velocity data for the development of improved advection–diffusion models. Care should be exercised in predicting the dispersal of particles at ecologically relevant spatial scales in rivers.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"27 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Violaine Piton, Rafael Reiss, Ulrich Lemmin, Orlane Anneville, Gaël Many, Jérémy Keller, Valentin Kindschi, Htet Kyi Wynn, Serena Rasconi, Leslie Laine, David Andrew Barry
{"title":"Identifying and quantifying unexpected deep zooplankton diel vertical migration in a large deep lake","authors":"Violaine Piton, Rafael Reiss, Ulrich Lemmin, Orlane Anneville, Gaël Many, Jérémy Keller, Valentin Kindschi, Htet Kyi Wynn, Serena Rasconi, Leslie Laine, David Andrew Barry","doi":"10.1002/lno.12736","DOIUrl":"https://doi.org/10.1002/lno.12736","url":null,"abstract":"Diel Vertical Migration (DVM), a widespread zooplankton behavior in freshwater and marine systems, affects ecological interactions and biogeochemical cycles. In lakes, DVM has mainly been studied in the upper 50 m of the water column. However, based on acoustic and net sampling data collected in Lake Geneva, Switzerland (~ 309 m depth) during summer 2022, we demonstrate that DVM occurs down to ~ 125 m depth daily throughout the summer season. The daily descents terminated at around zenith when the Relative Rate of light Change (RRC) was the lowest, and the late afternoon ascent started when RRC values exceeded −0.005 s<jats:sup>−1</jats:sup>. DVM migration descent/ascent rates were asymmetric with faster mean upward rates () than downward rates (). Migration rates overall increased as summer progressed, corresponding to the intra‐seasonal increase in RRC. Cyclopoid copepods <jats:italic>Cyclops prealpinus</jats:italic> abundances correlated with the observed deep DVM and their migration responded to exogenous light cues. These new findings, which can also be expected to be relevant for other deep lakes, indicate that Lake Geneva's DVM greatly exceeds maximum migration depths previously reported for a lake. Thus, it is important to study zooplankton DVM dynamics throughout the entire water column in large, deep lakes since it plays an important role in buffering global climate change effects. Furthermore, it is suggested that present zooplankton DVM sampling protocols in large, deep lakes should be revised accordingly.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"269 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeria Jimenez, Sebastian Sudek, Charlotte Eckmann, Charles Bachy, Camille Poirier, Fabian Wittmers, Alyson E. Santoro, Michael J. Follows, Francisco P. Chavez, Irina Shilova, Alexandra Z. Worden
{"title":"Distinct phytoplankton assemblages underlie hotspots of primary production in the eastern North Pacific Ocean","authors":"Valeria Jimenez, Sebastian Sudek, Charlotte Eckmann, Charles Bachy, Camille Poirier, Fabian Wittmers, Alyson E. Santoro, Michael J. Follows, Francisco P. Chavez, Irina Shilova, Alexandra Z. Worden","doi":"10.1002/lno.12771","DOIUrl":"https://doi.org/10.1002/lno.12771","url":null,"abstract":"Marine eastern boundary current ecosystems, such as the California Current System (CCS), involve productive, mesotrophic transition zones. The CCS exhibits highly variable primary production (PP), yet factors driving the variability and underlying phytoplankton communities remain poorly understood. We integrated physicochemical and biological data from surface waters sampled during 10 CCS expeditions, spanning 13 yr, and resolved regimes with distinct phytoplankton communities. Additional to an oligotrophic regime (OR), mesotrophic waters beyond the coastal area partitioned into Meso‐High and Meso‐Low regimes, differing in nitrate concentrations and PP. The OR was dominated by <jats:italic>Prochlorococcus</jats:italic> High‐Light I (HLI), and eukaryotic phytoplankton were largely predatory mixotrophs. Eukaryotes dominated Meso‐Low and Meso‐High phytoplankton biomass. Within the Meso‐Low, <jats:italic>Pelagomonas calceolata</jats:italic> was important, and <jats:italic>Prochlorococcus</jats:italic> Low‐Light I (LLI) rose in prominence. In the Meso‐High, the picoprasinophyte <jats:italic>Ostreococcus lucimarinus</jats:italic> was abundant, and <jats:italic>Synechococcus</jats:italic> Clade IV was notable. The Meso‐High exhibited the highest PP (38 ± 16 mg C m<jats:sup>−3</jats:sup> d<jats:sup>−1</jats:sup>; <jats:italic>p</jats:italic> < 0.01) and higher growth rates for photosynthetic eukaryotes (0.84 ± 0.02 d<jats:sup>−1</jats:sup>) than for <jats:italic>Prochlorococcus</jats:italic> (0.61 ± 0.01 d<jats:sup>−1</jats:sup>) and <jats:italic>Synechococcus</jats:italic> (0.31 ± 0.05 d<jats:sup>−1</jats:sup>). An experiment simulating seasonal oligotrophic seawater intrusion into the Meso‐High resulted in growth rates reaching 1.18 ± 0.10 d<jats:sup>−1</jats:sup> (<jats:italic>O. lucimarinus</jats:italic>), 0.75 ± 0.21 d<jats:sup>−1</jats:sup> (<jats:italic>Prochlorococcus</jats:italic> LLI), and 0.50 ± 0.04 d<jats:sup>−1</jats:sup> (<jats:italic>Synechococcus</jats:italic> EPC2). Thus, variable PP is underpinned by distinct phytoplankton communities across CCS mesotrophic regimes, and their dynamic nature is influenced by the rapidity with which specific taxa respond to changing environmental conditions or possibly transient nutrient release from viral encounters. Future work should assess whether these dynamics are consistent across eastern boundary current ecosystems and over temporal variations.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"7 6 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens Boyen, María T. Rodríguez, Bruno Vlaeminck, Patrick Fink, Pascal I. Hablützel, Marleen De Troch
{"title":"Temperature, pH, and diet interactively affect biosynthesis of polyunsaturated fatty acids in a benthic harpacticoid copepod","authors":"Jens Boyen, María T. Rodríguez, Bruno Vlaeminck, Patrick Fink, Pascal I. Hablützel, Marleen De Troch","doi":"10.1002/lno.12763","DOIUrl":"https://doi.org/10.1002/lno.12763","url":null,"abstract":"Greenhouse gas emissions lead to ocean warming and acidification, negatively impacting marine organisms and their functioning, including long‐chain polyunsaturated fatty acid (LC‐PUFA) production by marine microalgae. Copepods, primary consumers of microalgae, possess a unique capacity for endogenous LC‐PUFA biosynthesis, possibly enabling them to cope with reduced dietary LC‐PUFA availabilities. However, this capacity may be itself impacted by changing oceanographic conditions. In this study, we conducted a laboratory experiment to evaluate the combined effects of warming (+3°C), acidification (−0.4 pH), and dietary LC‐PUFA deficiency on the fatty acid composition and LC‐PUFA biosynthesis (measured by quantitative RT‐PCR) of the benthic harpacticoid copepod <jats:italic>Platychelipus littoralis</jats:italic> (Brady, 1880). We hypothesized increased LC‐PUFA biosynthesis under all drivers compensating for LC‐PUFA reductions. Lipid profiles of copepods exposed to multiple stressors contained shorter‐chained and more saturated fatty acids. While copepods maintained base‐line relative concentrations of the physiologically important LC‐PUFA docosahexaenoic acid (DHA) on an LC‐PUFA deficient diet at ambient temperatures, DHA concentrations decreased significantly with higher temperatures. Expression of the DHA biosynthesis genes Δ4 front‐end desaturase and elovl1a increased under dietary LC‐PUFA deficiency but did not exceed base‐line levels when simultaneously exposed to acidification. Expression of Δ4 front‐end desaturase and multiple elongases correlated positively with C<jats:sub>18</jats:sub> precursor concentrations and negatively with those of LC‐PUFAs such as DHA, indicating their role as LC‐PUFA biosynthesis enzymes. Overall, our findings suggest that ocean warming and acidification may impede benthic copepods' LC‐PUFA biosynthesis capacity under reduced dietary inputs, limiting their contribution toward global LC‐PUFA availability for higher trophic levels.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"29 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Audrey N. Thellman, Tammy Wooster, Heather Malcom, Emma J. Rosi, Emily S. Bernhardt
{"title":"Stream bryophytes promote “cryptic” productivity in highly oligotrophic headwaters","authors":"Audrey N. Thellman, Tammy Wooster, Heather Malcom, Emma J. Rosi, Emily S. Bernhardt","doi":"10.1002/lno.12741","DOIUrl":"https://doi.org/10.1002/lno.12741","url":null,"abstract":"Recent observations document increased abundance of algae in the headwater streams of Hubbard Brook Experimental Forest (HBEF). It is possible that this “greening up” of HBEF streams may be due to climate change, with rising temperatures, altering terrestrial phenology, and shifting hydrologic regimes. Alternatively, stream “greening” could be from the slow recovery of stream chemistry after decades of acid rain, which has led to rising pH, declining concentrations of toxic Al<jats:sup>3+</jats:sup>, and low solute concentrations. Four years of weekly algal measurements on artificial moss and ceramic tiles, along with six nutrient enrichment experiments, revealed new insights about the interactions between these two autotrophs. We found that in protected weir ponds and in stream channels, algal biomass was higher on artificial moss substrates than on tiles—with this effect amplified in the stream channels. These results suggest that bryophytes can provide physical protection from flood scour or may trap nutrients to support algal growth. In stream channels, algal biomass was higher in well‐lit habitats and time periods indicating strong light limitation. We only measured nitrogen and phosphorus limitation of algal biomass in nutrient enrichment experiments conducted within weir ponds, with higher light availability and lower flow. By comparison, results from the remaining four instream experiments provided little evidence for nutrient limitation, with only one trial showing increased algal growth in response to nutrient addition. The most striking implication of our study is the role of bryophytes in providing refugia, and potentially nutrients, to algae in shaded and oligotrophic headwater streams.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"56 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ian T. Black, Maria T. Kavanaugh, Clare E. Reimers
{"title":"Bloom compression alongside marine heatwaves contemporary with the Oregon upwelling season","authors":"Ian T. Black, Maria T. Kavanaugh, Clare E. Reimers","doi":"10.1002/lno.12757","DOIUrl":"https://doi.org/10.1002/lno.12757","url":null,"abstract":"Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyll <jats:italic>a</jats:italic> and sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"21 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bofu Zheng, Weifeng (Gordon) Zhang, Rubao Ji, Rachel H. R. Stanley, E. Taylor Crockford, Diana N. Fontaine, Emily E. Peacock, Tatiana A. Rynearson, Heidi M. Sosik
{"title":"Vertical nitrate flux fuels new production over summertime Northeast U.S. Shelf","authors":"Bofu Zheng, Weifeng (Gordon) Zhang, Rubao Ji, Rachel H. R. Stanley, E. Taylor Crockford, Diana N. Fontaine, Emily E. Peacock, Tatiana A. Rynearson, Heidi M. Sosik","doi":"10.1002/lno.12765","DOIUrl":"https://doi.org/10.1002/lno.12765","url":null,"abstract":"In aquatic ecosystems, allochthonous nutrient transport to the euphotic zone is an important process that fuels new production. Here, we use high‐resolution physical and biogeochemical observations from five summers to estimate the mean vertical nitrate flux, and thus new production over the Northeast U.S. Shelf (NES). We find that the summertime nitrate field is primarily controlled by biological uptake and physical advection–diffusion processes, above and below the 1% light level depth, respectively. We estimate the vertical nitrate flux to be 8.2 ± 5.3 × 10<jats:sup>−6</jats:sup> mmol N m<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup> for the mid‐shelf and 12.6 ± 8.6 × 10<jats:sup>−6</jats:sup> mmol N m<jats:sup>−2</jats:sup> s<jats:sup>−1</jats:sup> for the outer shelf. Furthermore, we show that the new production to total primary production ratio (i.e., the f‐ratio), consistently ranges between 10% and 15% under summer conditions on the NES. Two independent approaches—nitrate flux‐based new production and O<jats:sub>2</jats:sub>/Ar‐based net community production—corroborate the robustness of the f‐ratio estimation. Since ~ 85% of the total primary production is fueled by recycled nutrients over sufficiently broad spatial and temporal scales, less than 15% of the organic matter produced in summer is available for export from the NES euphotic zone. Our direct quantification of new production not only provides more precise details about key processes for NES food webs and ecosystem function, but also demonstrates the potential of this approach to be applied to other similar datasets to understand nutrient and carbon cycling in the global ocean.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"76 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher W. Hunt, Joseph E. Salisbury, Xuewu Liu, Robert H. Byrne
{"title":"Organic alkalinity distributions, characteristics, and application to carbonate system calculations in estuarine and coastal systems","authors":"Christopher W. Hunt, Joseph E. Salisbury, Xuewu Liu, Robert H. Byrne","doi":"10.1002/lno.12761","DOIUrl":"https://doi.org/10.1002/lno.12761","url":null,"abstract":"The capacity of aquatic systems to buffer acidification depends on the sum contributions of various chemical species to total alkalinity (TA). Major TA contributors are inorganic, with carbonate and bicarbonate considered the most important. However, growing evidence shows that many rivers, estuaries, and coastal waters contain dissolved organic molecules with charge sites that create organic alkalinity (OrgAlk). This study describes the first comparison of (1) OrgAlk distributions and (2) acid–base properties in contrasting estuary‐plume systems: the Pleasant (Maine, USA) and the St. John (New Brunswick, CA). The substantial concentrations of OrgAlk in each estuary were sometimes not conservative with salinity and typically associated with very low pH. Two approaches to OrgAlk measurement showed consistent differences, indicating acid–base characteristics inconsistent with the TA definition. The OrgAlk fraction of TA ranged from 78% at low salinity to less than 0.4% in the coastal ocean endmember. Modeling of titration data identified three groups of organic charge sites, with mean acid–base dissociation constants (pK<jats:sub>a</jats:sub>) of 4.2 (± 0.5), 5.9 (± 0.7) and 8.5 (± 0.2). These represented 21% (± 9%), 8% (± 5%), and 71% (± 11%) of titrated organic charge groups. Including OrgAlk, pK<jats:sub>a</jats:sub>, and titrated organic charge groups in carbonate system calculations improved estimates of pH. However, low and medium salinity, organic‐rich samples demonstrated persistent offsets in calculated pH, even using dissolved inorganic carbon and CO<jats:sub>2</jats:sub> partial pressure as inputs. These offsets show the ongoing challenge of carbonate system intercomparisons in organic rich systems whereby new techniques and further investigations are needed to fully account for OrgAlk in TA titrations.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"47 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dan Yang, Asger Buur Jensen, Brian K. Sorrell, Hans Brix, Franziska Eller
{"title":"Rising water levels increase CH4 emissions and decrease CO2 exchange in a temperate salt marsh","authors":"Dan Yang, Asger Buur Jensen, Brian K. Sorrell, Hans Brix, Franziska Eller","doi":"10.1002/lno.12742","DOIUrl":"https://doi.org/10.1002/lno.12742","url":null,"abstract":"Saline wetlands play a crucial role in climate regulation through their robust cooling effect, attributed to rapid carbon sequestration and minimal methane production. However, a comprehensive understanding of the mechanisms controlling their greenhouse gas (GHG) balance is lacking, particularly in salt marshes that are fully or partially submerged due to rising sea levels. We conducted a controlled manipulative experiment to test the effect of water levels on GHG emissions, including four water table levels: ‐10, 0, +5 cm and a fluctuating water table. We used soil cores from a <jats:italic>Spartina anglica</jats:italic>‐dominated salt marsh and examined the CO<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> fluxes over a growing season. Daylight CO<jats:sub>2</jats:sub> uptake and dark CO<jats:sub>2</jats:sub> emission were highest at the ‐10cm water table, while CH<jats:sub>4</jats:sub> emissions were lowest at this water table. CO<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> fluxes were primarily driven by air and water temperature and solar irradiance. Our results indicate that salt marshes with near‐surface water levels (‐10 to 5 cm) function as potent CO<jats:sub>2</jats:sub> sinks and minor sources of CH<jats:sub>4</jats:sub> during the growing season. The high photosynthetic carbon assimilation combined with low CH<jats:sub>4</jats:sub> fluxes resulted in a Global Warming Potential value of ‐326 g CO<jats:sub>2</jats:sub>eq m<jats:sup>−2</jats:sup> on a 100‐year scale. Our study accounted for CH<jats:sub>4</jats:sub> fluxes, CO<jats:sub>2</jats:sub> uptake and emission together, and identified the mechanisms controlling CO<jats:sub>2</jats:sub> and CH<jats:sub>4</jats:sub> exchange. This approach is crucial for evaluating the potential of saline tidal wetlands as net carbon sinks and for developing scientifically sound climate mitigation policies.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"38 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melissa Steinman, Moritz S. Schmid, Robert K. Cowen, Su Sponaugle, Kelly R. Sutherland, Anne W. Thompson
{"title":"The microorganisms associated with doliolids in a productive coastal upwelling system","authors":"Melissa Steinman, Moritz S. Schmid, Robert K. Cowen, Su Sponaugle, Kelly R. Sutherland, Anne W. Thompson","doi":"10.1002/lno.12748","DOIUrl":"https://doi.org/10.1002/lno.12748","url":null,"abstract":"Doliolids have a unique ability to impact the marine microbial community through bloom events and filter feeding. Their predation on large eukaryotic microorganisms is established and evidence of predation on smaller prokaryotic microorganisms is beginning to emerge. We studied the association between microorganisms and wild‐caught doliolids in the Northern California Current system. Doliolids were collected during bloom events identified at three different shelf locations with variable upwelling intensity. We discovered doliolids were associated with a range of prokaryotic microbial functional groups, which included free‐living pelagic Archaea, SAR11, and picocyanobacteria. The results suggest the possibility that doliolids could feed on the smallest members of the microbial community, expanding our understanding of doliolid feeding and microbial mortality. Given the ability of doliolids to clear large portions of seawater by filtration and their high abundance in this system, we suggest that doliolids could be an important player in shaping the microbial community structure of the Northern California Current system.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"32 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142788609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}