Mathew Wells, Tim Johnson, Rylie Robinson, Jon Midwood, Yulu Shi, Sarah Larocque, Adam Eddie, Brian O'Malley, Kyle Morton, Dimitry Gorsky, Bruce Tufts
{"title":"新颖的全年热分层观测揭示了安大略湖独特的热混合模式","authors":"Mathew Wells, Tim Johnson, Rylie Robinson, Jon Midwood, Yulu Shi, Sarah Larocque, Adam Eddie, Brian O'Malley, Kyle Morton, Dimitry Gorsky, Bruce Tufts","doi":"10.1002/lno.70215","DOIUrl":null,"url":null,"abstract":"Year‐round records of thermal stratification in the Great Lakes are rare, and there are few observations of thermal stratification during winter. In this paper, we analyze temperature data from 13 temperature logger chains and from over 130 benthic acoustic receivers that were deployed across Lake Ontario for 2 yr. The timing and duration of the fall overturn correlate with the local average water depth, and shallow sites (< 50 m depth) overturn up to a month before deep sites (> 100 m depths). Likewise, in spring, the shallow sites warm faster. Lake Ontario has partial ice cover, so wind‐driven mixing stirs the water column throughout winter, and inverse thermal stratification is largely absent. The depth‐averaged winter water temperatures vary between 0°C and 4°C, with the coldest temperatures (near 0.1°C) found in the shallow Kingston basin and warmest temperatures (near 4°C) at sites near the 244 m deep Rochester Basin. Lake Ontario appears to be a warm monomictic lake, rather than having a dimictic mixing pattern as previously described—there is no sustained ice cover or inverse stratification that inhibits vertical mixing in winter. Winter is a poorly understood season for many aquatic processes, including fish bioenergetics, fish distribution, biochemical processes, invertebrate distribution, and production. Moreover, the lack of knowledge of winter has hampered the use of correct initial conditions for running large lake hydrodynamic models.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique thermal mixing patterns in Lake Ontario revealed by novel year‐round observations of thermal stratification\",\"authors\":\"Mathew Wells, Tim Johnson, Rylie Robinson, Jon Midwood, Yulu Shi, Sarah Larocque, Adam Eddie, Brian O'Malley, Kyle Morton, Dimitry Gorsky, Bruce Tufts\",\"doi\":\"10.1002/lno.70215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Year‐round records of thermal stratification in the Great Lakes are rare, and there are few observations of thermal stratification during winter. In this paper, we analyze temperature data from 13 temperature logger chains and from over 130 benthic acoustic receivers that were deployed across Lake Ontario for 2 yr. The timing and duration of the fall overturn correlate with the local average water depth, and shallow sites (< 50 m depth) overturn up to a month before deep sites (> 100 m depths). Likewise, in spring, the shallow sites warm faster. Lake Ontario has partial ice cover, so wind‐driven mixing stirs the water column throughout winter, and inverse thermal stratification is largely absent. The depth‐averaged winter water temperatures vary between 0°C and 4°C, with the coldest temperatures (near 0.1°C) found in the shallow Kingston basin and warmest temperatures (near 4°C) at sites near the 244 m deep Rochester Basin. Lake Ontario appears to be a warm monomictic lake, rather than having a dimictic mixing pattern as previously described—there is no sustained ice cover or inverse stratification that inhibits vertical mixing in winter. Winter is a poorly understood season for many aquatic processes, including fish bioenergetics, fish distribution, biochemical processes, invertebrate distribution, and production. Moreover, the lack of knowledge of winter has hampered the use of correct initial conditions for running large lake hydrodynamic models.\",\"PeriodicalId\":18143,\"journal\":{\"name\":\"Limnology and Oceanography\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/lno.70215\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.70215","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Unique thermal mixing patterns in Lake Ontario revealed by novel year‐round observations of thermal stratification
Year‐round records of thermal stratification in the Great Lakes are rare, and there are few observations of thermal stratification during winter. In this paper, we analyze temperature data from 13 temperature logger chains and from over 130 benthic acoustic receivers that were deployed across Lake Ontario for 2 yr. The timing and duration of the fall overturn correlate with the local average water depth, and shallow sites (< 50 m depth) overturn up to a month before deep sites (> 100 m depths). Likewise, in spring, the shallow sites warm faster. Lake Ontario has partial ice cover, so wind‐driven mixing stirs the water column throughout winter, and inverse thermal stratification is largely absent. The depth‐averaged winter water temperatures vary between 0°C and 4°C, with the coldest temperatures (near 0.1°C) found in the shallow Kingston basin and warmest temperatures (near 4°C) at sites near the 244 m deep Rochester Basin. Lake Ontario appears to be a warm monomictic lake, rather than having a dimictic mixing pattern as previously described—there is no sustained ice cover or inverse stratification that inhibits vertical mixing in winter. Winter is a poorly understood season for many aquatic processes, including fish bioenergetics, fish distribution, biochemical processes, invertebrate distribution, and production. Moreover, the lack of knowledge of winter has hampered the use of correct initial conditions for running large lake hydrodynamic models.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.