Magnetic Resonance in Chemistry最新文献

筛选
英文 中文
Pure shift FESTA: An ultra-high resolution NMR tool for the analysis of complex fluorine-containing spin systems 纯移FESTA:用于分析复杂含氟自旋系统的超高分辨率核磁共振工具
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-09-09 DOI: 10.1002/mrc.5393
Coral Mycroft, Marshall J. Smith, Mathias Nilsson, Gareth A. Morris, Laura Castañar
{"title":"Pure shift FESTA: An ultra-high resolution NMR tool for the analysis of complex fluorine-containing spin systems","authors":"Coral Mycroft,&nbsp;Marshall J. Smith,&nbsp;Mathias Nilsson,&nbsp;Gareth A. Morris,&nbsp;Laura Castañar","doi":"10.1002/mrc.5393","DOIUrl":"10.1002/mrc.5393","url":null,"abstract":"<p>NMR measurements of molecules containing sparse fluorine atoms are becoming increasingly common due to their prevalence in medicinal chemistry. However, the presence of both homonuclear and heteronuclear scalar couplings severely complicates their analysis by NMR. In complex systems, FESTA, a heteronuclear spectral editing method, allows simplified <sup>1</sup>H NMR spectra to be obtained containing only <sup>1</sup>H signals from the same spin system as a chosen <sup>19</sup>F. Despite spectral simplification, signal overlap due to the presence of scalar couplings is often a problem in FESTA spectra. Here, we report a new experiment that combines FESTA and pure shift methods to provide fully decoupled ultra-high resolution FESTA spectra showing a single signal for each <sup>1</sup>H chemical environment. The utility of the method is demonstrated for the analysis of two complex fluorine-containing mixtures of pharmaceutical and biochemical interest.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 11","pages":"606-614"},"PeriodicalIF":2.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5393","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactivation of Ni-TiO2 catalysts in hydrogen flow and in supercritical 2-propanol—Comparative study by electron spin resonance in situ Ni-TiO2催化剂在氢流和超临界2-丙醇中的反应——电子自旋共振原位比较研究
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-09-08 DOI: 10.1002/mrc.5385
Irina Kandarakova, Stanislav Yakushkin, Nikolay Nesterov, Alexey Philippov, Oleg Martyanov
{"title":"Reactivation of Ni-TiO2 catalysts in hydrogen flow and in supercritical 2-propanol—Comparative study by electron spin resonance in situ","authors":"Irina Kandarakova,&nbsp;Stanislav Yakushkin,&nbsp;Nikolay Nesterov,&nbsp;Alexey Philippov,&nbsp;Oleg Martyanov","doi":"10.1002/mrc.5385","DOIUrl":"https://doi.org/10.1002/mrc.5385","url":null,"abstract":"<p>Highly dispersed Ni-TiO<sub>2</sub> catalyst has been studied in the process of preparation and under catalytic transfer hydrogenation reaction conditions in supercritical 2-propanol (250°C, 70 bar) using electron spin resonance in situ. Electron spin resonance in situ has been used to study the process of the catalyst passivation and subsequent reduction of the oxide layer in the gas flow. Reduction of the NiO layer on the surface of passivated Ni nanoparticles has been detected in supercritical 2-propanol, which is in agreement with kinetic modeling data. It has been found that the reduction of the nickel oxide layer in supercritical 2-propanol occurs at a lower temperature compared with the reduction in hydrogen flow, according to in situ electron spin resonance study.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 11","pages":"574-581"},"PeriodicalIF":2.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50125420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping of 1H NMR chemical shifts relationship with chemical similarities for the acceleration of metabolic profiling: Application on blood products 加速代谢谱的1h NMR化学位移关系与化学相似性的映射:在血液制品上的应用。
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-09-04 DOI: 10.1002/mrc.5392
Panteleimon G. Takis, Varvara A. Aggelidou, Caroline J. Sands, Alexandra Louka
{"title":"Mapping of 1H NMR chemical shifts relationship with chemical similarities for the acceleration of metabolic profiling: Application on blood products","authors":"Panteleimon G. Takis,&nbsp;Varvara A. Aggelidou,&nbsp;Caroline J. Sands,&nbsp;Alexandra Louka","doi":"10.1002/mrc.5392","DOIUrl":"10.1002/mrc.5392","url":null,"abstract":"<p>One-dimensional (1D) proton-nuclear magnetic resonance (<sup>1</sup>H-NMR) spectroscopy is an established technique for the deconvolution of complex biological sample types via the identification/quantification of small molecules. It is highly reproducible and could be easily automated for small to large-scale bioanalytical, epidemiological, and in general metabolomics studies. However, chemical shift variability is a serious issue that must still be solved in order to fully automate metabolite identification. Herein, we demonstrate a strategy to increase the confidence in assignments and effectively predict the chemical shifts of various NMR signals based upon the simplest form of statistical models (i.e., linear regression). To build these models, we were guided by chemical homology in serum/plasma metabolites classes (i.e., amino acids and carboxylic acids) and similarity between chemical groups such as methyl protons. Our models, built on 940 serum samples and validated in an independent cohort of 1,052 plasma-EDTA spectra, were able to successfully predict the <sup>1</sup>H NMR chemical shifts of 15 metabolites within ~1.5 linewidths (Δ<i>v</i><sub>1/2</sub>) error range on average. This pilot study demonstrates the potential of developing an algorithm for the accurate assignment of <sup>1</sup>H NMR chemical shifts based solely on chemically defined constraints.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 12","pages":"759-769"},"PeriodicalIF":2.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5392","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10210349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differentiation of patients with and without prostate cancer using urine 1H NMR metabolomics 尿1h NMR代谢组学鉴别前列腺癌患者与非前列腺癌患者。
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-09-01 DOI: 10.1002/mrc.5391
Anna-Laura Hasubek, Xiaoyu Wang, Ella Zhang, Marta Kobus, Jiashang Chen, Lindsey A. Vandergrift, Annika Kurreck, Felix Ehret, Sarah Dinges, Annika Hohm, Marlon Tilgner, Alexander Buko, Piet Habbel, Johannes Nowak, Nathaniel D. Mercaldo, Andrew Gusev, Adam S. Feldman, Leo L. Cheng
{"title":"Differentiation of patients with and without prostate cancer using urine 1H NMR metabolomics","authors":"Anna-Laura Hasubek,&nbsp;Xiaoyu Wang,&nbsp;Ella Zhang,&nbsp;Marta Kobus,&nbsp;Jiashang Chen,&nbsp;Lindsey A. Vandergrift,&nbsp;Annika Kurreck,&nbsp;Felix Ehret,&nbsp;Sarah Dinges,&nbsp;Annika Hohm,&nbsp;Marlon Tilgner,&nbsp;Alexander Buko,&nbsp;Piet Habbel,&nbsp;Johannes Nowak,&nbsp;Nathaniel D. Mercaldo,&nbsp;Andrew Gusev,&nbsp;Adam S. Feldman,&nbsp;Leo L. Cheng","doi":"10.1002/mrc.5391","DOIUrl":"10.1002/mrc.5391","url":null,"abstract":"<p>Prostate cancer (PCa) is one of the most prevalent cancers in men worldwide. For its detection, serum prostate-specific antigen (PSA) screening is commonly used, despite its lack of specificity, high false positive rate, and inability to discriminate indolent from aggressive PCa. Following increases in serum PSA levels, clinicians often conduct prostate biopsies with or without advanced imaging. Nuclear magnetic resonance (NMR)-based metabolomics has proven to be promising for advancing early-detection and elucidation of disease progression, through the discovery and characterization of novel biomarkers. This retrospective study of urine-NMR samples, from prostate biopsy patients with and without PCa, identified several metabolites involved in energy metabolism, amino acid metabolism, and the hippuric acid pathway. Of note, lactate and hippurate—key metabolites involved in cellular proliferation and microbiome effects, respectively—were significantly altered, unveiling widespread metabolomic modifications associated with PCa development. These findings support urine metabolomics profiling as a promising strategy to identify new clinical biomarkers for PCa detection and diagnosis.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 12","pages":"740-747"},"PeriodicalIF":2.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10502504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrected solid-state 13C nuclear magnetic resonance peak assignment and side-group quantification of hydroxypropyl methylcellulose acetyl succinate pharmaceutical excipients 羟丙基甲基纤维素乙酰琥珀酸酯药用辅料的校正固态13C核磁共振峰分配和侧基定量
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-30 DOI: 10.1002/mrc.5390
Zhaoxi Zheng, Yongchao Su, Klaus Schmidt-Rohr
{"title":"Corrected solid-state 13C nuclear magnetic resonance peak assignment and side-group quantification of hydroxypropyl methylcellulose acetyl succinate pharmaceutical excipients","authors":"Zhaoxi Zheng,&nbsp;Yongchao Su,&nbsp;Klaus Schmidt-Rohr","doi":"10.1002/mrc.5390","DOIUrl":"https://doi.org/10.1002/mrc.5390","url":null,"abstract":"<p>Hydroxypropyl methylcellulose acetyl succinate (HPMCAS) is widely used as a pharmaceutical excipient, making a detailed understanding of its tunable structure important for formulation design. Several recently reported peak assignments in the solid-state <sup>13</sup>C NMR spectrum of HPMCAS have been corrected here using peak integrals in quantitative spectra, spectral editing, empirical chemical-shift predictions based on solution NMR, and full spectrum simulation analogous to deconvolution. Unlike in cellulose, the strong peak at 84 ppm must be assigned to C2 and C3 methyl ethers, instead of regular C4 of cellulose. The proposed assignment of signals at &lt;65 ppm to OCH sites, including C5 of cellulose, could not be confirmed. CH<sub>2</sub> spectral editing showed two resolved OCH<sub>2</sub> bands, a more intense one from O-CH<sub>2</sub> ethers of C6 at &gt;69 ppm and a smaller one from its esters and possibly residual CH<sub>2</sub>-OH groups, near 63 ppm. The strong intensities of resolved signals of acetyl, succinoyl, and oxypropyl substituents indicated the substitution of &gt;85% of the OH groups in HPMCAS. The side-group concentrations in three different grades of HPMCAS were quantified.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 11","pages":"595-605"},"PeriodicalIF":2.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50155699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solution and solid-state 33S NMR studies of 33S-labeled taurine 33S标记牛磺酸的溶液和固态33S NMR研究
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-23 DOI: 10.1002/mrc.5387
Yuichi Masuda, Shinobu Ohki, Yuuki Mogami, Kenzo Deguchi, Kenjiro Hashi, Atsushi Goto, Tadashi Shimizu, Kazuhiko Yamada
{"title":"Solution and solid-state 33S NMR studies of 33S-labeled taurine","authors":"Yuichi Masuda,&nbsp;Shinobu Ohki,&nbsp;Yuuki Mogami,&nbsp;Kenzo Deguchi,&nbsp;Kenjiro Hashi,&nbsp;Atsushi Goto,&nbsp;Tadashi Shimizu,&nbsp;Kazuhiko Yamada","doi":"10.1002/mrc.5387","DOIUrl":"https://doi.org/10.1002/mrc.5387","url":null,"abstract":"<p>Sulfur-33(<sup>33</sup>S) stable-isotope labeled taurine, 2-aminoethanesulfonic acid, has been synthesized, and a series of solution and solid-state <sup>33</sup>S nuclear magnetic resonance (NMR) experiments at 14.1 and 18.8 T, respectively, have been carried out at room temperature. The single peak of a solution <sup>33</sup>S NMR spectrum in 0.1-mM [<sup>33</sup>S]-taurine in D<sub>2</sub>O can be observed with the signal-to-noise (S/N) ratio of 9 in 40,000 scans, which paves the way toward in vivo analysis of pharmacokinetics and metabolism of <sup>33</sup>S-labeled taurine. Undistorted magic-angle-spinning (MAS) and static <sup>33</sup>S NMR spectra of polycrystalline [<sup>33</sup>S]-taurine are observed with sufficient S/N ratios for analysis, and the magnitudes of <sup>33</sup>S EFG and CS tensors can be obtained.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 11","pages":"589-594"},"PeriodicalIF":2.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50141621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Penindolacid A, a new indole alkaloid from the marine-derived fungus Penicillium sp. Penindolacid A是一种新的吲哚类生物碱,产自海洋真菌青霉菌。
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-23 DOI: 10.1002/mrc.5389
Jin-Xin Zhang, Bao-Dan Zhang, Ying Shi, Ya-Nan Zhai, Jin-Wei Ren, Lei Cai, Li-Yan Sun, Ling Liu
{"title":"Penindolacid A, a new indole alkaloid from the marine-derived fungus Penicillium sp.","authors":"Jin-Xin Zhang,&nbsp;Bao-Dan Zhang,&nbsp;Ying Shi,&nbsp;Ya-Nan Zhai,&nbsp;Jin-Wei Ren,&nbsp;Lei Cai,&nbsp;Li-Yan Sun,&nbsp;Ling Liu","doi":"10.1002/mrc.5389","DOIUrl":"10.1002/mrc.5389","url":null,"abstract":"<p>\u0000 \u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 9-10","pages":"554-559"},"PeriodicalIF":2.0,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10159082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database—An assessment 使用碳13核磁共振通过查询核磁共振数据库来鉴定已知的天然产物评估。
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-15 DOI: 10.1002/mrc.5386
Jean-Marc Nuzillard
{"title":"Use of carbon-13 NMR to identify known natural products by querying a nuclear magnetic resonance database—An assessment","authors":"Jean-Marc Nuzillard","doi":"10.1002/mrc.5386","DOIUrl":"10.1002/mrc.5386","url":null,"abstract":"<p>The quick identification of known organic low molecular weight compounds, also known as structural dereplication, is a highly important task in the chemical profiling of natural resource extracts. To that end, a method that relies on carbon-13 nuclear magnetic resonance (NMR) spectroscopy, elaborated in earlier works of the author's research group, requires the availability of a dedicated database that establishes relationships between chemical structures, biological and chemical taxonomy, and spectroscopy. The construction of such a database, called <i>acd_lotus</i>, was reported earlier, and its usefulness was illustrated by only three examples. This article presents the results of structure searches carried out starting from 58 carbon-13 NMR data sets recorded on compounds selected in the metabolomics section of the biological magnetic resonance bank (BMRB). Two compound retrieval methods were employed. The first one involves searching in the <i>acd_lotus</i> database using commercial software. The second one operates through the freely accessible web interface of the nmrshiftdb2 database, which includes the compounds present in <i>acd_lotus</i> and many others. The two structural dereplication methods have proved to be efficient and can be used together in a complementary way.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 11","pages":"582-588"},"PeriodicalIF":2.0,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5386","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10073031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Removing acoustic ringing baseline curvature in 13C NMR spectra for quantitative analyses 用于定量分析的13C NMR谱中消除声学振铃基线曲率
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-07 DOI: 10.1002/mrc.5384
Joseph K. Vasquez, Zhe Zhou, Brian Clark, Ad J. Kimenai, Benjamin R. Reiner, Nathan J. Rau, Dan Baugh III, Donald V. Eldred, Manjiri Paradkar, Chen Zheng, Jim DeFelippis, Janece M. Potter, Xiao Hua Qiu, Xiaohong Zong, Wenshiue Owen Young, Thomas Fitzgibbons, Aitor Moreno, Christoph Freudenberger, Maksim Mayzel
{"title":"Removing acoustic ringing baseline curvature in 13C NMR spectra for quantitative analyses","authors":"Joseph K. Vasquez,&nbsp;Zhe Zhou,&nbsp;Brian Clark,&nbsp;Ad J. Kimenai,&nbsp;Benjamin R. Reiner,&nbsp;Nathan J. Rau,&nbsp;Dan Baugh III,&nbsp;Donald V. Eldred,&nbsp;Manjiri Paradkar,&nbsp;Chen Zheng,&nbsp;Jim DeFelippis,&nbsp;Janece M. Potter,&nbsp;Xiao Hua Qiu,&nbsp;Xiaohong Zong,&nbsp;Wenshiue Owen Young,&nbsp;Thomas Fitzgibbons,&nbsp;Aitor Moreno,&nbsp;Christoph Freudenberger,&nbsp;Maksim Mayzel","doi":"10.1002/mrc.5384","DOIUrl":"https://doi.org/10.1002/mrc.5384","url":null,"abstract":"<p><sup>13</sup>C nuclear magnetic resonance (NMR) is traditionally considered an insensitive technique, requiring long acquisition times to measure dilute functionalities on large polymers. With the introduction of cryoprobes and better electronics, sensitivity has improved in a way that allows measurements to take less than 1/20th the time that they previously did. Unfortunately, a high Q-factor with cryoprobes creates baseline curvature related to acoustic ringing that affects quantitative NMR analyses. Manual baseline correction is commonly used to compensate for the baseline roll, but it is a time-intensive process. The outcome of manual baseline correction can vary depending on processing parameters, especially for complicated spectra. Additionally, it can be challenging to distinguish between broad peaks and baseline rolls. A new anti-ring pulse sequence (zgig_pisp) was previously reported to improve on the incumbent single pulse experiment (zgig). The original report presented limited comparison data with <sup>13</sup>C NMR, but a thorough validation is needed before broader implementation can be considered. In this work, we report the round-robin testing and comparison of zgig_pisp and zgig pulse sequences. During the testing phase, we found that zgig_pisp is practically equivalent to zgig to ±2% for the majority of integrals examined. Additionally, a short broadband inversion pulse (BIP) was demonstrated as an alternative to the originally reported adiabatic CHIRP shaped pulse. The zgig_pisp pulse sequence code for Bruker spectrometers is also simplified.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 9-10","pages":"544-553"},"PeriodicalIF":2.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50135735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic NMR data acquisition with a prototype 400 MHz cryogen-free NMR spectrometer 各向异性核磁共振数据采集与原型400兆赫无低温核磁共振光谱仪
IF 2 3区 化学
Magnetic Resonance in Chemistry Pub Date : 2023-08-02 DOI: 10.1002/mrc.5380
Maria Victoria Silva Elipe, Ikenna Edward Ndukwe, Armando Navarro-Vázquez
{"title":"Anisotropic NMR data acquisition with a prototype 400 MHz cryogen-free NMR spectrometer","authors":"Maria Victoria Silva Elipe,&nbsp;Ikenna Edward Ndukwe,&nbsp;Armando Navarro-Vázquez","doi":"10.1002/mrc.5380","DOIUrl":"10.1002/mrc.5380","url":null,"abstract":"<p>High-temperature superconducting (HTS) materials have recently been incorporated into the construction of HTS cryogen-free magnets for nuclear magnetic resonance (NMR) spectroscopy. These HTS NMR spectrometers do not require liquid cryogens, thereby providing significant cost savings and facilitating easy integration into chemistry laboratories. However, the optimal performance of these HTS magnets against standard cryogen NMR magnets must be evaluated, especially with demanding modern NMR applications such as NMR in anisotropic media. The stability of the HTS magnets over time and their performance with complex pulse sequence experiments are the main unknown factors of this new technology. In this study, we evaluate the utility of our prototype 400 MHz cryogen-free power-driven HTS NMR spectrometer, installed in the fumehood of a chemistry laboratory, for stereochemical analysis of three commercial natural products (artemisinin, artemether, and dihydroartemisinin) via measurement of anisotropic NMR data, in particular, residual dipolar couplings. The accuracy of measurement of the anisotropic NMR data with the HTS magnet spectrometer is evaluated through the CASE-3D fitting protocol, as implemented in the Mestrenova-StereoFitter software program.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"61 9-10","pages":"530-543"},"PeriodicalIF":2.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5380","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10531300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信