Kyle G. Brennan, Sean R. Brennan, Timothy Cline, Gabriel J. Bowen
{"title":"Delineating population structure of resilient sea/river‐type sockeye salmon","authors":"Kyle G. Brennan, Sean R. Brennan, Timothy Cline, Gabriel J. Bowen","doi":"10.1002/lol2.10437","DOIUrl":"https://doi.org/10.1002/lol2.10437","url":null,"abstract":"Conserving wild fisheries requires identifying and monitoring distinct populations, yet prevalent genetic approaches often do not integrate habitat data and may not fully delineate these structures. This issue is critical in sea/river‐type sockeye salmon (<jats:italic>Oncorhynchus nerka</jats:italic>), an ecotype whose specific spawning habitats better define distinct breeding populations. Despite possessing traits that confer greater resilience to climate change and significant contributions to wild fisheries, gene flow among groups dilutes genetic structure, making it difficult to track populations. We focus on sea/river sockeye from one of the Pacific Rim's largest Sockeye fisheries, combining river strontium (Sr) isotope predictions, otolith Sr isotope measurements, and a Bayesian assignment model with a 4‐yr radiotelemetry and genetic dataset (<jats:italic>n</jats:italic> = 1994) to delineate the geographic structure of spawning habitats. Our results identify four distinct subpopulations with unique natal habitat Sr isotope ratios previously undifferentiated by genetic methods, providing a novel approach to monitor critical groups over multiple years.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hilary A. Dugan, Zachary S. Feiner, Monika Winder, Heidi M. Sosik, Emily H. Stanley
{"title":"Advancing phenology in limnology and oceanography","authors":"Hilary A. Dugan, Zachary S. Feiner, Monika Winder, Heidi M. Sosik, Emily H. Stanley","doi":"10.1002/lol2.10432","DOIUrl":"10.1002/lol2.10432","url":null,"abstract":"<p>Phenology, the study of the seasonal timing of natural phenomena, is a central construct in ecology, focusing on interactions between temporal changes in the physical environment and the structuring of annual organismal, population, community, and ecosystem dynamics (Forrest and Miller-Rushing <span>2010</span>). In aquatic ecology, phenology explicitly or implicitly forms the basis of several foundational concepts. For example, the match/mismatch hypothesis (Cushing <span>1990</span>) theorizes that the survival of newly hatched fish larvae will depend on their temporal overlap with peak production of their food resources, namely plankton, and was explicitly developed from earlier phenological studies of phytoplankton (Cushing <span>1967</span>) and fish spawning (Hjort <span>1914</span>; Cushing <span>1969</span>). The Plankton Ecology Group (PEG) model (Sommer et al. <span>1986</span>, <span>2012</span>) implicitly draws on phenological concepts to explain observed, predictable seasonal succession in plankton communities.</p><p>Despite the centrality of phenology in how we understand aquatic ecosystems, the study of aquatic phenology lags behind its terrestrial counterpart. We see three related explanations for slower progress in the aquatic realm. First and most simply, observing phenological phenomena in aquatic systems is difficult because they occur out of sight, and monitoring is costly as a result. Terrestrial research has benefited from the wealth of observations collected by well-coordinated volunteer networks (e.g., National Phenology Network [NPN], European Phenology Network, and the Global Phenological Monitoring Programme) that report observations often at a daily timescale outfitted with little to no equipment. Aquatic representation within these programs is largely limited to observations of the appearance of aquatic birds, large fish, amphibians, or budding/blooming of well-known riparian or wetland vegetation. The relative ease of tracking terrestrial organisms has also allowed deeper investigations of the ecological and evolutionary processes driving terrestrial phenology, including the ability of organisms to adapt to shifting seasonality (Anderson et al. <span>2012</span>; Kingsolver and Buckley <span>2015</span>). Thus, it is not surprising that a literature search on the study of phenology reveals a terrestrial bias, with studies dominated by topics such as the timing of bird migration or the appearance of various developmental stages among a range of plant species and locations.</p><p>Second, the problem of observing subsurface events or behaviors is compounded by the short life cycles and small body sizes of key aquatic groups. Short generation times mean that notable phenological events occur rapidly and briefly, and small body sizes allow many species to escape notice even under the best of circumstances. Thus, one cannot track the appearance and decline of a spring phytoplankton bloom or the emergence of zooplankto","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple climatic drivers increase pace and consequences of ecosystem change in the Arctic Coastal Ocean","authors":"Mikael K. Sejr, Amanda E. Poste, Paul E. Renaud","doi":"10.1002/lol2.10431","DOIUrl":"https://doi.org/10.1002/lol2.10431","url":null,"abstract":"The impacts of climate change on Arctic marine systems are noticeable within the scientific “lifetime” of most researchers and the iconic image of a polar bear struggling to stay on top of a melting ice floe captures many of the dominant themes of Arctic marine ecosystem change. But has our focus on open‐ocean systems and parameters that are more easily modeled and sensed remotely neglected an element that is responding more dramatically and with broader implications for Arctic ecosystems? We argue that a complementary set of changes to the open ocean is occurring along Arctic coasts, amplified by the interaction with changes on land and in the sea. We observe an increased number of ecosystem drivers with larger implications for the ecological and human communities they touch than are quantifiable in the open Arctic Ocean. Substantial knowledge gaps exist that must be filled to support adaptation and sustainability of socioecological systems along Arctic coasts.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison R. Hrycik, Lyubov E. Burlakova, Alexander Y. Karatayev, Susan E. Daniel, Ronald Dermott, Morgan Tarbell, Elizabeth K. Hinchey
{"title":"A dataset of individual wet weights of benthic macroinvertebrates","authors":"Allison R. Hrycik, Lyubov E. Burlakova, Alexander Y. Karatayev, Susan E. Daniel, Ronald Dermott, Morgan Tarbell, Elizabeth K. Hinchey","doi":"10.1002/lol2.10428","DOIUrl":"https://doi.org/10.1002/lol2.10428","url":null,"abstract":"Biomass estimates are crucial for modeling and understanding energy flow through ecosystems. Many modeling frameworks rely on published body weights of organisms to convert density estimates to biomass. However, published body weight data are limited to few taxa in a limited number of systems. Here we present mean individual weights for common benthic macroinvertebrates of the Laurentian Great Lakes from over 2000 benthic samples and 8 yr of data collection. We also compiled wet to dry weight conversions to facilitate data reuse for researchers interested in dry weight. We compared our benthic invertebrate weights to other lakes, demonstrating when weight measurements may be applied outside the Great Lakes. Sensitivity analyses supported the robustness of our calculations. Our dataset is applicable to food web energy flow models, calculation of secondary production, interpretation of trophic markers, and for understanding how biomass distribution varies by benthic invertebrate species in the Great Lakes.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Bonaglia, Henry L. S. Cheung, Tobia Politi, Irma Vybernaite‐Lubiene, Tristan McKenzie, Isaac R. Santos, Mindaugas Zilius
{"title":"Eutrophication and urbanization enhance methane emissions from coastal lagoons","authors":"Stefano Bonaglia, Henry L. S. Cheung, Tobia Politi, Irma Vybernaite‐Lubiene, Tristan McKenzie, Isaac R. Santos, Mindaugas Zilius","doi":"10.1002/lol2.10430","DOIUrl":"https://doi.org/10.1002/lol2.10430","url":null,"abstract":"Coastal lagoons are important nutrient filters and carbon sinks but may release large amounts of methane (CH<jats:sub>4</jats:sub>) to the atmosphere. Here, we hypothesize that eutrophication and population density will turn coastal lagoons into stronger methane emitters. We report benthic fluxes from 187 sediment cores incubated from three of the largest European lagoons suffering persistent eutrophication. Methane fluxes were mainly driven by sediment porosity, organic matter, and dissolved inorganic carbon (DIC) fluxes. Methane was always supersaturated (250–49,000%) in lagoon waters leading to large, variable emissions of 0.04–26 mg CH<jats:sub>4</jats:sub> m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>. Combining our new dataset with earlier estimates revealed a global coastal lagoon emission of 7.9 (1.4–34.7) Tg CH<jats:sub>4</jats:sub> yr<jats:sup>−1</jats:sup> with median values of 5.4 mg CH<jats:sub>4</jats:sub> m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>. Lagoons with very highly populated catchments released much more methane (223 mg CH<jats:sub>4</jats:sub> m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>). Overall, projected increases in eutrophication, organic loading and population densities will enhance methane fluxes from lagoons worldwide.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142050579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Zhang, Stéphane Blain, Corentin Baudet, Hélène Planquette, Frédéric Vivier, Philippe Catala, Olivier Crispi, Audrey Guéneuguès, Barbara Marie, Pavla Debeljak, Ingrid Obernosterer
{"title":"Tagging of water masses with covariance of trace metals and prokaryotic taxa in the Southern Ocean","authors":"Rui Zhang, Stéphane Blain, Corentin Baudet, Hélène Planquette, Frédéric Vivier, Philippe Catala, Olivier Crispi, Audrey Guéneuguès, Barbara Marie, Pavla Debeljak, Ingrid Obernosterer","doi":"10.1002/lol2.10429","DOIUrl":"https://doi.org/10.1002/lol2.10429","url":null,"abstract":"Marine microbes are strongly interrelated to trace metals in the ocean. How the availability of trace metals selects for prokaryotic taxa and the potential feedback of microbial processes on the trace metal distribution in the ocean remain poorly understood. We investigate here the potential reciprocal links between diverse prokaryotic taxa and iron (Fe), manganese (Mn), copper (Cu), and nickel (Ni) as well as apparent oxygen utilization (AOU) across 12 well‐defined water masses in the Southern Indian Ocean (<jats:italic>SWINGS—South West Indian Ocean GEOTRACES GS02 Section</jats:italic> cruise). Applying partial least square regression (PLSR) analysis, we show that the water masses are associated with particular latent vectors that are a combination of the spatial distribution of prokaryotic taxa, trace elements, and AOU. This approach provides novel insights on the potential interactions between prokaryotic taxa and trace metals in relation to organic matter remineralization in distinct water masses of the ocean.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas S. Marzolf, Michael J. Vlah, Heili E. Lowman, Weston M. Slaughter, Emily S. Bernhardt
{"title":"Phenology of gross primary productivity in rivers displays high variability within years but stability across years","authors":"Nicholas S. Marzolf, Michael J. Vlah, Heili E. Lowman, Weston M. Slaughter, Emily S. Bernhardt","doi":"10.1002/lol2.10407","DOIUrl":"10.1002/lol2.10407","url":null,"abstract":"<p>Modeling and sensor innovations in the last decade have enabled routine and continuous estimation of daily gross primary productivity (GPP) for rivers. Here, we generate and evaluate within and across year variability for 59 US rivers for which we have compiled a 14-yr time series of daily GPP estimates. River productivity varied widely across (median annual GPP 462 g C m<sup>−2</sup> yr<sup>−1</sup>, range 19–3445 g C m<sup>−2</sup> yr<sup>−1</sup>) and within rivers (CV<sub>GPP-Inter</sub> 5.7–37.3%). Within this dataset, we found that five rivers have become consistently more productive over time, while 11 rivers have become consistently less productive. Furthermore, trends in ecosystem phenology were identified, where cumulative annual GPP was reached earlier (<i>n</i> = 3) and later (<i>n</i> = 13) in the year across the 25<sup>th</sup>, 50<sup>th</sup>, 75<sup>th</sup>, and 95<sup>th</sup> percentiles. Understanding the drivers of productivity trends in rivers will elucidate patterns in river food webs and the functional role of river biogeochemistry.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10407","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Igor Ogashawara, Sabine Wollrab, Stella A. Berger, Christine Kiel, Andreas Jechow, Alexis L. N. Guislain, Peter Gege, Thomas Ruhtz, Martin Hieronymi, Thomas Schneider, Gunnar Lischeid, Gabriel A. Singer, Franz Hölker, Hans‐Peter Grossart, Jens C. Nejstgaard
{"title":"Unleashing the power of remote sensing data in aquatic research: Guidelines for optimal utilization","authors":"Igor Ogashawara, Sabine Wollrab, Stella A. Berger, Christine Kiel, Andreas Jechow, Alexis L. N. Guislain, Peter Gege, Thomas Ruhtz, Martin Hieronymi, Thomas Schneider, Gunnar Lischeid, Gabriel A. Singer, Franz Hölker, Hans‐Peter Grossart, Jens C. Nejstgaard","doi":"10.1002/lol2.10427","DOIUrl":"https://doi.org/10.1002/lol2.10427","url":null,"abstract":"","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph J. Gey, Laurent Pfister, Guilhem Türk, Frankie Thielen, Loic Leonard, Katharina E. Schmitt, Bernd R. Schöne
{"title":"Biologically driven isotope fractionation in ultrastructurally different shell portions of freshwater pearl mussels (Margaritifera margaritifera): Implications for stream water δ18O reconstructions","authors":"Christoph J. Gey, Laurent Pfister, Guilhem Türk, Frankie Thielen, Loic Leonard, Katharina E. Schmitt, Bernd R. Schöne","doi":"10.1002/lol2.10426","DOIUrl":"https://doi.org/10.1002/lol2.10426","url":null,"abstract":"Oxygen isotopes in stream water can serve as natural tracers of watershed dynamics. Freshwater pearl mussels provide δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub> estimates that overcome temporal and spatial limitations of instrumental records. The reliability of shell‐based δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub> reconstructions depends on understanding which shell layer biomineralizes closer to oxygen isotopic equilibrium with ambient water. To determine this, both the (outer) prismatic and (inner) nacreous sublayers of the outer shell layer were sampled. Over 2500 isotope values were obtained from shells collected from the Our River (Luxembourg) and from mussels cultured in tanks at constant temperature and monitored δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub>. Calculated δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub> from the prismatic portion was in excellent agreement with monitored δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub>, while δ<jats:sup>18</jats:sup>O<jats:sub>shell</jats:sub> of the nacreous portion was systematically offset by +0.43‰, overestimating δ<jats:sup>18</jats:sup>O<jats:sub>water</jats:sub> by +0.53‰. Although shell portions were formed simultaneously from the same extrapallial fluid, they underwent different fractionation mechanisms, presumably due to differences in carbonic anhydrase activity catalyzing mineralization processes.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141877370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What's hot and what's not in the aquatic sciences—Understanding and improving news coverage","authors":"John A. Downing","doi":"10.1002/lol2.10425","DOIUrl":"https://doi.org/10.1002/lol2.10425","url":null,"abstract":"The frequency of news reporting about scientific topics is positively related to public interest as well as to public support for science funding and public policy change. This correlation can also have positive impacts on individual scientific careers depending on the chosen subject area of research. Analysis of a public news database shows the frequency and trends in news reporting of several popular research areas in the aquatic sciences. The frequency of appearance of topics in the news varies over more than three orders of magnitude. Temporal trends in reporting vary from steeply increasing (+25% per year) to declining (−4% per year). Suggestions are offered concerning the framing of research topics and overall better communication of research findings to journalists and the general public. This understanding may increase news prominence, public interest, science funding, and policy change in aquatic research areas.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":7.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}