Spencer J. Tassone, Michelle C. Kelly, Olivia N. Beidler, Michael L. Pace, Amy M. Marcarelli
{"title":"Impacts of riverine heatwaves on rates of ecosystem metabolism in the United States","authors":"Spencer J. Tassone, Michelle C. Kelly, Olivia N. Beidler, Michael L. Pace, Amy M. Marcarelli","doi":"10.1002/lol2.70014","DOIUrl":null,"url":null,"abstract":"Rivers produce and decompose large amounts of carbon globally due, in part, to high rates of gross primary production (GPP) and ecosystem respiration (ER), collectively known as ecosystem metabolism. Water temperature is a major driver of ecosystem metabolism, and in‐stream temperatures are increasing globally, including extreme temperature events called heatwaves. This study used published estimates of daily GPP and ER from 48 stream and river locations in the United States to examine how ecosystem metabolism responds to riverine heatwaves. During low‐severity heatwaves, GPP and ER increase proportionally, resulting in no net difference. However, during severe and extreme heatwaves, GPP declined up to 82% while ER increased up to 47%, resulting in greater rates of heterotrophy (ER > GPP). While rivers were typically heterotrophic outside of heatwave conditions, these results suggest that during heatwaves, rivers become stronger sources of carbon dioxide.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.70014","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rivers produce and decompose large amounts of carbon globally due, in part, to high rates of gross primary production (GPP) and ecosystem respiration (ER), collectively known as ecosystem metabolism. Water temperature is a major driver of ecosystem metabolism, and in‐stream temperatures are increasing globally, including extreme temperature events called heatwaves. This study used published estimates of daily GPP and ER from 48 stream and river locations in the United States to examine how ecosystem metabolism responds to riverine heatwaves. During low‐severity heatwaves, GPP and ER increase proportionally, resulting in no net difference. However, during severe and extreme heatwaves, GPP declined up to 82% while ER increased up to 47%, resulting in greater rates of heterotrophy (ER > GPP). While rivers were typically heterotrophic outside of heatwave conditions, these results suggest that during heatwaves, rivers become stronger sources of carbon dioxide.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.