{"title":"A model of near‐sea ice phytoplankton blooms","authors":"C. W. Lester, T. J. W. Wagner, Dylan E. McNamara","doi":"10.1002/lol2.10449","DOIUrl":"https://doi.org/10.1002/lol2.10449","url":null,"abstract":"Arctic phytoplankton spring blooms have increased in magnitude and extent over the past two decades, particularly in waters near the sea ice edge. We develop an idealized model of phytoplankton dynamics that takes into account the role of sea ice meltwater flux and its impact on surface mixed layer depth. Satellite observations feature a characteristic peak in phytoplankton concentration at around 100 km from the ice edge. Model dynamics capture this peak and overall structure of the phytoplankton distribution. In the model, the characteristic spatial scale emerges from a balance of exponential growth near the ice edge, horizontal advection, and increased decay with distance from the ice as the mixed layer deepens. Observations and data further agree in that meltwater impacts phytoplankton concentrations up to 1000 km from the ice edge. Results suggest that reduced meltwater input under future sea ice retreat may suppress spring phytoplankton blooms in the region.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"31 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel A. Juma, Cédric L. Meunier, Emily M. Herstoff, Anna M. Irrgang, Michael Fritz, Caroline Weber, Hugues Lantuit, Inga V. Kirstein, Maarten Boersma
{"title":"Future Arctic: how will increasing coastal erosion shape nearshore planktonic food webs?","authors":"Gabriel A. Juma, Cédric L. Meunier, Emily M. Herstoff, Anna M. Irrgang, Michael Fritz, Caroline Weber, Hugues Lantuit, Inga V. Kirstein, Maarten Boersma","doi":"10.1002/lol2.10446","DOIUrl":"https://doi.org/10.1002/lol2.10446","url":null,"abstract":"Arctic regimes. Currently, warming accelerates the erosion of permafrost coasts and the associated discharge of sediment, carbon, and nutrients into the Arctic Ocean. However, the impacts of coastal erosion on planktonic food webs remain understudied. We aimed to (1) understand how coastal erosion impacts nearshore carbon, nutrient, and light regimes; (2) investigate the effects on primary production and energy transfer; and (3) predict how increased erosion will impact the productivity of consumers, and the overall food web interactions. We found that sediment discharge increases turbidity (darkening). This darkening is expected to hamper phytoplankton productivity, while additional carbon input will provide bacteria with direct energy sources, and shift the balance between basal autotrophic and heterotrophic production. Since the heterotrophic pathway has a lower efficiency, its dominance might negatively affect mesozooplankton. Increased Arctic coastal erosion might therefore influence planktonic food webs by changing mechanisms of energy mobilization and transfer to higher trophic levels.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"242 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Minkyoung Kim, Thomas M. Blattmann, Baozhi Lin, Sun‐A Lee, Daniel B. Montluçon, Timothy I. Eglinton
{"title":"Mineral surface area of sinking particles in the deep ocean interior: Preliminary implications","authors":"Minkyoung Kim, Thomas M. Blattmann, Baozhi Lin, Sun‐A Lee, Daniel B. Montluçon, Timothy I. Eglinton","doi":"10.1002/lol2.10450","DOIUrl":"https://doi.org/10.1002/lol2.10450","url":null,"abstract":"Measurement of the mineral surface area (MSA) of sedimentary particles is a traditional approach for studying the transport and protection of organic carbon (OC) in marine systems. We investigated the application of MSA on the biological carbon pump in the deep ocean interior in the Ulleung Basin (UB), East/Japan Sea. This is the second study of sinking particle MSA, and the first in an ocean with no major riverine (terrestrial) input. We measured seasonal and vertical variations in the MSA of sinking particles and adjacent surface sediments in the UB. Mineral surface area values exhibit seasonal variations associated with particle composition, with a negative correlation with OC content and a strong positive correlation with the content of lithogenic material and the radiocarbon values of sinking OC. Our results indicate that the MSA of sinking particles may provide clues to the processes of particle resuspension and decomposition.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"233 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capitalizing on the wealth of chemical data in the accretionary structures of aquatic taxa: Opportunities from across the tree of life","authors":"Zoë A. Doubleday, Louise Hosking, Jasper Willoughby, Minoli Dias, Natasha Leclerc, Shanie Brault Nikolajew, Melita Peharda, Arieli Tristão Rézio, Clive Trueman","doi":"10.1002/lol2.10448","DOIUrl":"https://doi.org/10.1002/lol2.10448","url":null,"abstract":"Aquatic organisms are natural data loggers and record chemical variations within hardened accretionary structures like shells and teeth. Chemical sclerochronology is the study of these chemical variations through time and how they are used to understand environmental change and the physiology and ecology of species. While sclerochronology research has largely focused on bivalves, teleost fish, and hard corals, there are many other aquatic taxa rich with time‐resolved chemical data. To expand focus to these “other” taxa and determine the state‐of‐play, we compiled a database of chemical sclerochronology studies spanning nine living phyla and 19 classes. We then examined research trends and knowledge gaps across these taxa and showcase their exciting potential to collect critical data and address pressing environmental and ecological challenges. We hope this synthesis will encourage further research on species across the tree of life, as well as foster collaboration among the established and lesser‐known fields of sclerochronology.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"62 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ge Pu, Krill Shchapov, Nolan J. T. Pearce, Kelly Bowen, Andrew Bramburger, Andrew Camilleri, Hunter Carrick, Justin D. Chaffin, William Cody, Maureen L. Coleman, Warren J. S. Currie, David C. Depew, Jonathan P. Doubek, Rachel Eveleth, Mark Fitzpatrick, Paul W. Glyshaw, Casey M. Godwin, R. Michael McKay, Mohiuddin Munawar, Heather Niblock, Maci Quintanilla, Michael Rennie, Matthew W. Sand, Kimberly J. Schraitle, Michael R. Twiss, Donald G. Uzarski, Henry A. Vanderploeg, Trista J. Vick‐Majors, Judy A. Westrick, Bridget A. Wheelock, Marguerite A. Xenopoulos, Arthur Zastepa, Ted Ozersky
{"title":"The Great Lakes Winter Grab: Limnological data from a multi‐institutional winter sampling campaign on the Laurentian Great Lakes","authors":"Ge Pu, Krill Shchapov, Nolan J. T. Pearce, Kelly Bowen, Andrew Bramburger, Andrew Camilleri, Hunter Carrick, Justin D. Chaffin, William Cody, Maureen L. Coleman, Warren J. S. Currie, David C. Depew, Jonathan P. Doubek, Rachel Eveleth, Mark Fitzpatrick, Paul W. Glyshaw, Casey M. Godwin, R. Michael McKay, Mohiuddin Munawar, Heather Niblock, Maci Quintanilla, Michael Rennie, Matthew W. Sand, Kimberly J. Schraitle, Michael R. Twiss, Donald G. Uzarski, Henry A. Vanderploeg, Trista J. Vick‐Majors, Judy A. Westrick, Bridget A. Wheelock, Marguerite A. Xenopoulos, Arthur Zastepa, Ted Ozersky","doi":"10.1002/lol2.10447","DOIUrl":"https://doi.org/10.1002/lol2.10447","url":null,"abstract":"Interest in winter limnology is growing rapidly, but progress is hindered by a shortage of standardized multivariate datasets on winter conditions. Addressing the winter data gap will enhance our understanding of winter ecosystem function and of lake response to environmental change. Here, we describe a dataset generated by a multi‐institutional winter sampling campaign across all five Laurentian Great Lakes and some of their connecting waters (the Great Lakes Winter Grab). The objective of Winter Grab was to characterize mid‐winter limnological conditions in the Great Lakes using standard sample collection and analysis methods. Nineteen research groups sampled 49 locations varying widely in depth and trophic status, collecting a range of limnological data. This dataset includes physical, chemical, and biological measurements. These data can be used to examine diverse aspects of Great Lakes ecosystems or integrated with winter observations from other lakes to improve understanding of winter limnology across different aquatic systems.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"72 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment","authors":"Tamika Nagao, Rolf Vinebrooke","doi":"10.1002/lol2.10445","DOIUrl":"https://doi.org/10.1002/lol2.10445","url":null,"abstract":"The accelerating rate of global climate change at higher elevations and latitudes is increasing the potential for extreme climatic events. Here, a knowledge gap exists in how the order of exposure to, and duration of droughts and heatwaves affect their cumulative impact on aquatic communities. We tested experimentally for the legacy effects of simultaneous vs. sequential exposures to drought and heatwave on sediment‐dwelling algal communities (epipelon) from small fishless alpine lakes. In both simultaneous, and sequential exposure treatments involving drought followed by a heatwave, the negative effect of drought masked the effects of warming on chlorophyll‐inferred algal biomass and taxonomic composition. Reversal of order of exposure (i.e., heatwave followed by drought) lowered their cumulative effect on community structure. These findings highlight the potential for drought events to dominate over heatwaves in altering shallow littoral ecosystems at high elevations under a rapidly warming climate.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"3 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Snow removal cools a small dystrophic lake","authors":"H. A. Dugan, R. Ladwig, P. Schramm, N. R. Lottig","doi":"10.1002/lol2.10444","DOIUrl":"https://doi.org/10.1002/lol2.10444","url":null,"abstract":"Limnological understanding of the role snow plays in under‐ice thermal dynamics is mainly based on studies of clear‐water lakes. Very little is known about the role snow plays in the thermal dynamics of dystrophic lakes. We conducted a whole lake experiment on a small, 8 m deep dystrophic bog lake in northern Wisconsin, where we removed all snowfall over two consecutive winters. Due to weather variability, only 1 year had predominantly black ice. Under these conditions, the lake rapidly cooled in early and mid‐winter, compared to snow covered conditions that insulated the lake from heat loss. The lake also rapidly gained heat in late winter resulting in isothermal conditions well in advance of ice‐off. These results show how water clarity modulates the influence of snow on under‐ice thermal dynamics, which is relevant to futures with snow droughts.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"25 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura M. V. Soares, Olivia Desgué‐Itier, Cécilia Barouillet, Céline Casenave, Isabelle Domaizon, Victor Frossard, Nelson G. Hairston, Andrea Lami, Bruno J. Lemaire, Georges‐Marie Saulnier, Frédéric Soulignac, Brigitte Vinçon‐Leite, Jean‐Philippe Jenny
{"title":"Unraveling Lake Geneva's hypoxia crisis in the Anthropocene","authors":"Laura M. V. Soares, Olivia Desgué‐Itier, Cécilia Barouillet, Céline Casenave, Isabelle Domaizon, Victor Frossard, Nelson G. Hairston, Andrea Lami, Bruno J. Lemaire, Georges‐Marie Saulnier, Frédéric Soulignac, Brigitte Vinçon‐Leite, Jean‐Philippe Jenny","doi":"10.1002/lol2.10435","DOIUrl":"https://doi.org/10.1002/lol2.10435","url":null,"abstract":"Despite global evidence of lake deoxygenation, its duration, timing, and impacts over decadal to centennial timescales remain uncertain. This study introduces a novel model approach using 150 yr of limnological and paleolimnological data to evaluate the anthropogenic impacts on deep oxygen in Lake Geneva. Results highlight an increase in oxygen consumption rates due to cultural eutrophication, initially triggering historical hypoxia, subsequently exacerbated by reduced winter mixing induced by climate change. Simulations of pre‐eutrophication conditions and future climate scenarios define safe operating spaces for the lake to thrive without severe hypoxia risk. Complete winter mixing and O<jats:sub>2</jats:sub> recharge once every 3 yr can compensate the oxygen demand in Lake Geneva, even when exceeding 1.5 g O<jats:sub>2</jats:sub> m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup>. However, when complete winter mixing becomes less frequent, even consumption rates similar to those observed before eutrophication can cause persistent hypoxia, posing a significant threat to the survival of hypolimnetic aquatic life.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"192 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simple visualization of fish migration history based on high‐resolution otolith δ18O profiles and hydrodynamic models","authors":"Tatsuya Sakamoto","doi":"10.1002/lol2.10434","DOIUrl":"https://doi.org/10.1002/lol2.10434","url":null,"abstract":"Oxygen‐stable isotope (<jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O) in otoliths has been useful to infer marine fish migrations. However, because otolith <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O is affected by two parameters, temperature and <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O of ambient water, its interpretation becomes challenging when neither of them is constant. Here, I describe a simple method using hydrodynamic models to visualize potential migration histories from high‐resolution otolith <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O chronologies. By predicting the distribution of potential otolith <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O, that is, otolith <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O isoscape from modeled temperature and salinity distributions and comparing these with observed values, possible fish locations can be inferred. The demonstration of sardine juveniles in the western North Pacific region reproduced their seasonal northward migrations accurately. The predicted locations were consistent with the results of sampling surveys of eggs and juveniles and correctly approached the point where fish were caught. The methodological recommendations and the successful demonstration in this study may help in planning future sclerochronology research using carbonate <jats:italic>δ</jats:italic><jats:sup>18</jats:sup>O values.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"58 1","pages":""},"PeriodicalIF":7.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley E. Stanek, Jonathan A. O'Donnell, Michael P. Carey, Sarah M. Laske, Xiaomei Xu, Kenneth H. Dunton, Vanessa R. von Biela
{"title":"Arctic fishes reveal patterns in radiocarbon age across habitats and with recent climate change","authors":"Ashley E. Stanek, Jonathan A. O'Donnell, Michael P. Carey, Sarah M. Laske, Xiaomei Xu, Kenneth H. Dunton, Vanessa R. von Biela","doi":"10.1002/lol2.10442","DOIUrl":"10.1002/lol2.10442","url":null,"abstract":"<p>Climate change alters the sources and age of carbon in Arctic food webs by fostering the release of older carbon from degrading permafrost. Radiocarbon (<sup>14</sup>C) traces carbon sources and age, but data before rapid warming are rare and limit assessments over time. We capitalized on <sup>14</sup>C data collected ~ 40 years ago that used fish as natural samplers by resampling the same species today. Among resampled fish, those using freshwater food webs had the oldest <sup>14</sup>C ages (> 1000 yr BP), while those using marine food webs had the youngest <sup>14</sup>C ages (near modern). One migratory species encompassed the entire range of <sup>14</sup>C ages because juveniles fed in freshwater streams and adults fed in offshore marine habitats. Over ~ 40 yr, average <sup>14</sup>C ages of freshwater and marine feeding fish shifted closer to atmospheric values, suggesting a potential influence from “greening of the Arctic.”</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 6","pages":"796-805"},"PeriodicalIF":5.1,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}