Elvira de Eyto, Robyn L. Smyth, Rachel M. Pilla, Alo Laas, Amir Reza Shahabinia, Angela Baldocchi, Ankur R. Desai, Anna Lupon, Annalea Lohila, Biel Obrador, Blaize A. Denfeld, Cayelan C. Carey, David Bastviken, David Reed, David Rudberg, Eva‐Ingrid Rõõm, Francois Clayer, Gesa A. Weyhenmeyer, Hannah E. Chmiel, Hans Peter Grossart, Heleen A. de Wit, Ilga Kokorite, Jan‐Erik Thrane, Jānis Bikše, James A. Rusak, Jorge Encinas Fernández, José Fernandes Bezerra‐Neto, Ludmila S. Brighenti, Matthias Koschorreck, Mika Aurela, Nathan Barros, Philipp S. Keller, R. Iestyn Woolway, Rafael Marcé, Ryan P. McClure, Samuel Haverinen, Sari Juutinen, Sarian Kosten, Steve Sadro, Brian C. Doyle
{"title":"Diel variation in CO2 flux is substantial in many lakes","authors":"Elvira de Eyto, Robyn L. Smyth, Rachel M. Pilla, Alo Laas, Amir Reza Shahabinia, Angela Baldocchi, Ankur R. Desai, Anna Lupon, Annalea Lohila, Biel Obrador, Blaize A. Denfeld, Cayelan C. Carey, David Bastviken, David Reed, David Rudberg, Eva‐Ingrid Rõõm, Francois Clayer, Gesa A. Weyhenmeyer, Hannah E. Chmiel, Hans Peter Grossart, Heleen A. de Wit, Ilga Kokorite, Jan‐Erik Thrane, Jānis Bikše, James A. Rusak, Jorge Encinas Fernández, José Fernandes Bezerra‐Neto, Ludmila S. Brighenti, Matthias Koschorreck, Mika Aurela, Nathan Barros, Philipp S. Keller, R. Iestyn Woolway, Rafael Marcé, Ryan P. McClure, Samuel Haverinen, Sari Juutinen, Sarian Kosten, Steve Sadro, Brian C. Doyle","doi":"10.1002/lol2.70066","DOIUrl":null,"url":null,"abstract":"Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO<jats:sub>2</jats:sub>). In situ measurements of CO<jats:sub>2</jats:sub> flux (FCO<jats:sub>2</jats:sub>) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole‐lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO<jats:sub>2</jats:sub> across lakes. We sampled 21 lakes over 41 campaigns and measured FCO<jats:sub>2</jats:sub> at 4‐h intervals over a full diel cycle. Rates of FCO<jats:sub>2</jats:sub> ranged from −3.16 to 4.39 mmol m<jats:sup>−2</jats:sup> h<jats:sup>−1</jats:sup>. Integrated over a day, FCO<jats:sub>2</jats:sub> ranged from −381.68 to 878.49 mg C m<jats:sup>−2</jats:sup> d<jats:sup>−1</jats:sup> (mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO<jats:sub>2</jats:sub> related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"88 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.70066","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO2). In situ measurements of CO2 flux (FCO2) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole‐lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO2 across lakes. We sampled 21 lakes over 41 campaigns and measured FCO2 at 4‐h intervals over a full diel cycle. Rates of FCO2 ranged from −3.16 to 4.39 mmol m−2 h−1. Integrated over a day, FCO2 ranged from −381.68 to 878.49 mg C m−2 d−1 (mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO2 related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.