{"title":"Termination Kinetics of N-Vinyl Formamide Radical Polymerization in Aqueous Solution","authors":"Patrick Drawe, Hendrik Kattner, Michael Buback","doi":"10.1002/macp.202400247","DOIUrl":"https://doi.org/10.1002/macp.202400247","url":null,"abstract":"<p>Termination kinetics of radical polymerization of <i>N</i>-vinyl formamide (NVF) in aqueous solution has been measured via SP–PLP–NIR, i.e., single pulse (SP) initiation of pulsed laser polymerization (PLP) in conjunction with microsecond time-resolved near-infrared (NIR) detection of monomer concentration. Experiments are performed at initial NVF weight fractions from 0.20 up to bulk NVF, at monomer conversions up to 40%, and at temperatures from 40 to 70 °C as well as pressures from 500 to 2500 bar. Applying high pressure improves signal-to-noise quality. Data obtained upon pressure variation allow for extrapolation toward ambient pressure. The primary quantity from SP–PLP–NIR is <i>k</i><sub>p</sub>/<<i>k</i><sub>t</sub>>, i.e., the ratio of propagation rate coefficient, <i>k</i><sub>p</sub>, to apparent chain-length-averaged termination rate coefficient, <<i>k</i><sub>t</sub>>. With <i>k</i><sub>p</sub> being available from literature, <i>k</i><sub>p</sub>/<<i>k</i><sub>t</sub>> yields <<i>k</i><sub>t</sub>>. This quantity is relevant for modeling polymerization rate and polymer properties. Termination in the initial polymerization period turns out to be controlled by segmental diffusion and, at higher degrees of monomer conversion up to 40%, by translational diffusion.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 22","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400247","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front Cover: Macromol. Chem. Phys. 18/2024","authors":"","doi":"10.1002/macp.202470036","DOIUrl":"https://doi.org/10.1002/macp.202470036","url":null,"abstract":"<p><b>Front Cover</b>: Reactively processed multilayered films comprising PBAT nanocomposites not only achieve improved oxygen barrier and dimensional stability at high temperatures but also achieve a higher biodegradation than the neat PBAT film with a similar thickness. The soil–compost mixture after biodegradation of the films is nontoxic. Therefore, the reactively processed composite is a sustainable polymeric material with superior properties and may find packaging or biomedical applications where existing materials cannot be recycled. More details can be found in the article 2400067 by Suprakas Sinha Ray and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 18","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202470036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Radiation Assisted Construction of Fused Deposition Modeling 3D Printing Flexible Sensors","authors":"Xueling Hu, Yanling Zheng, Dhandapani Kuzhandaivel, Xiaohong Ding, Lixin Wu, Jianlei Wang, Xianliang Lin, Xiaoyong Hu, Xu Zhang","doi":"10.1002/macp.202400284","DOIUrl":"https://doi.org/10.1002/macp.202400284","url":null,"abstract":"With the rapid development of the internet of things, the simple preparation of sensors has become a challenge. The present work presents the simple preparation of flexible sensors by using the fused deposition modeling (FDM) 3D printing combined with the microwave radiation‐assisted treatment of the thermoplastic polyurethane (TPU) with carbon nanotubes (CNTs) as conductive fillers to create the flexible sensors. The as‐prepared TPU/CNT composites exhibit the 7.27 MPa tensile strength and 401% elongation at break, similar to those of the pure TPU. After 200 tensile cycles, the TPU/CNT composites can still stably convert pressure into electrical signals, which can be used as flexible sensors with high sensitivity (0.879 kPa<jats:sup>−1</jats:sup>). In addition, shoe insoles and finger cover with sensing performance are fabricated through the FDM 3D printing technology, demonstrating the potential of the sensors to monitor human gait, finger straightening, and bending movements. The as‐proposed method involves the embedding CNTs as conductive fillers on the surface of TPU to form the TPU/CNT composite conductive layers on the surface of TPU, which is beneficial for maintaining the elasticity of the polymer matrix. The challenges in preparing stable, low‐cost, and scalable flexible sensors and highlights of the advantages of 3D printing technology in manufacturing flexible piezoresistive sensors are also deeply discussed.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"40 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Cao, Ryota Nishiyama, Kazuki Nakamura, Norihisa Kobayashi
{"title":"Luminescent Hybrid Material Based on the Europium(III)–β‐Diketone Complex Doped with Smectite","authors":"Rong Cao, Ryota Nishiyama, Kazuki Nakamura, Norihisa Kobayashi","doi":"10.1002/macp.202400208","DOIUrl":"https://doi.org/10.1002/macp.202400208","url":null,"abstract":"Lanthanide‐containing organic–inorganic hybrid materials exhibit considerable potential for applications in optical devices. In this study, efficient luminescent hybrid materials are prepared by employing a straightforward doping method to mix the Eu(tta)<jats:sub>3</jats:sub>phen complex (tta = 2‐thenoyltrifluoroacetone, phen = 1,10‐phenanthroline) with a synthetic clay compound of hectorite (smectite). The comprehensive photophysical properties of dispersion solution containing the Eu(tta)<jats:sub>3</jats:sub>phen/smectite hybrid material are systematically investigated via ultraviolet‐visible absorption spectroscopy, luminescence spectra, luminescence lifetimes, and Judd–Ofelt analysis. The emission properties of the Eu(tta)<jats:sub>3</jats:sub>phen are enhanced by its interaction with smectite. Furthermore, the interaction suppressed the molecular vibration of Eu(tta)<jats:sub>3</jats:sub>phen, resulting in elevated luminescence intensity and quantum efficiency. Moreover, a highly luminescent and transparent polymeric film is prepared by incorporating Eu(tta)<jats:sub>3</jats:sub>phen/smectite hybrid material into a polymer (PMMA) matrix. With the addition of the smectite compound, the transparency and surface smoothness of the polymeric film are improved. Consistent with the solution state, smectite enhanced the luminescence intensity of Eu(tta)<jats:sub>3</jats:sub>phen in the film state. This strategy presents a novel opportunity for high‐luminescence imaging devices.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"13 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk
{"title":"Functionalized Polyisobutylene and Polyisobutylene‐Based Block Copolymers by Mechanistic Transformation from Cationic to Radical Process","authors":"Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk","doi":"10.1002/macp.202400261","DOIUrl":"https://doi.org/10.1002/macp.202400261","url":null,"abstract":"The strategy for the preparation of polyisobutylene‐based block copolymers via mechanistic transformation from cationic to radical polymerization is reported. This strategy involves the synthesis of 2‐bromo‐2‐methylpropanoyl‐terminated difunctional polyisobutylene macroinitiator (BiBB‐PIB‐BiBB) via consecutive cationic polymerization, in situ preparation of hydroxyl‐terminated polyisobutylene and its acylation by 2‐bromo‐2‐methylpropanoyl bromide. The Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub>−triggered photo‐induced radical polymerization of styrene in bulk using this macroinitiator leads to the formation of multiblock copolymer, while predominantly triblock copolymer is generated during the polymerization of methyl methacrylate. The possibility to functionalize the polyisobutylene by pyrene via photo‐induced radical addition of 1‐bromomethyl pyrene in the presence of Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub> is also demonstrated in this work.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"54 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riku Takahashi, Eri Tomita, Shinpei Mukadeyama, Shinji Kanehashi, Kenji Ogino
{"title":"Solid-State NMR Exploration of Factors for Enhancement of Hole Mobility by Introduction of Poly(styrene) Into Poly(3-hexylthiophene)","authors":"Riku Takahashi, Eri Tomita, Shinpei Mukadeyama, Shinji Kanehashi, Kenji Ogino","doi":"10.1002/macp.202400225","DOIUrl":"10.1002/macp.202400225","url":null,"abstract":"<p>Solid-state cross-polarization magic angle spinning (CPMAS) <sup>13</sup>C NMR is employed to examine the morphological factors that contribute to the enhanced hole mobility observed in poly(3-hexylthiophene) (P3HT) by the introduction of electrically inert poly(styrene) (PSt). Chain mobilities of crystalline and amorphous phases in the P3HT domain are evaluated utilizing <i>T</i><sub>1</sub><sup>C</sup> (<sup>13</sup>C spin-lattice relaxation time in the laboratory frame). The crystallinity of P3HT component is estimated based on the spectral editing method through <i>T</i><sub>1ρ</sub><sup>H</sup> (<sup>1</sup>H spin-lattice relaxation time in the rotating frame) filtered CPMAS. Moreover, the miscibility of P3HT crystalline and P3HT amorphous domains is estimated. These results suggest the formation of the rigid amorphous (short-range ordered amorphous) in a block copolymer (P3HT-block-PSt). An increase in the proportion of the crystallite and proximate presence of each crystallite in a blend sample of P3HT with PSt (P3HT-blend-PSt) are also indicated. Enhanced mobility is attributed to the larger portion of rigid amorphous domain for P3HT-block-PSt, and to higher crystalline content for P3HT-blend-PSt.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 22","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aggregation‐Induced Emission Near‐Infrared (NIR)‐II‐Conjugated Polymers Coupled With Nonconjugated Segments for NIR‐II Fluorescence Imaging–Guided NIR‐II Photothermal Therapy","authors":"Zixin Hu, Jiarong He, Chenhang Xi, Sicheng Xu, Qingming Shen, Pengfei Chen, Pengfei Sun, Quli Fan","doi":"10.1002/macp.202400268","DOIUrl":"https://doi.org/10.1002/macp.202400268","url":null,"abstract":"The development of conjugated polymer–based water‐soluble nanoparticles for near‐infrared‐II (NIR‐II) fluorescence (FL; 1000–1700 nm)‐guided photothermal therapy holds promise in advancing cancer treatment. However, excessive nonradiative decay leads to almost complete quenching of conjugated polymers’ fluorescence. Therefore, a critical challenge is to suppress nonradiative decay while maintaining high‐quality fluorescence imaging and excellent photothermal conversion efficiency. In this study, a series of NIR‐II‐conjugated polymers with aggregation‐induced emission (AIE) effects are designed and synthesized using the Stille coupling reaction. The dual enhancement strategy of modulating the AIE units and introducing non‐conjugated backbone into the polymer backbone resulted in BCT1 with a high αAIE value of 3.27. BCT1 nanoparticles exhibit excellent NIR‐II fluorescence, a high photothermal conversion efficiency of 70.51%, and a tenfold enhancement in fluorescence compared with BT1. Both in vitro and in vivo experiments validated their good biocompatibility and outstanding performance in NIR‐II fluorescence imaging for accurately determining the location of tumors. This study provides a novel strategy and method for designing and developing multifunctional conjugated polymers for NIR‐II fluorescence imaging–guided photothermal therapy.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"13 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}