Patinya Karoh, Maiko K. Okajima, Tatsuo Kaneko, Thapakorn Tree-Udom
{"title":"Efficient Stabilization and Directional-Controlled Release of Vitamin C in Disaccharide/Megasaccharide Composite Xerogels","authors":"Patinya Karoh, Maiko K. Okajima, Tatsuo Kaneko, Thapakorn Tree-Udom","doi":"10.1002/macp.202470040","DOIUrl":"https://doi.org/10.1002/macp.202470040","url":null,"abstract":"<p><b>Front Cover</b>: The combination of disaccharide trehalose and magasaccharide sacran in composite xerogel films effectively preserves vitamin C in a dry state. The cross-section FE-SEM images confirmed the presence of intercalated layered structures, supporting the existence of a striped structure with numerous lines along the longitudinal axis. Upon immersion in water, they exhibit anisotropic swelling behavior, releasing vitamin C preferentially from the edges, aiding dynamic control in sustained delivery systems. More details can be found in article 2400125 by Thapakorn Tree-Udom and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202470040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Achilleas Pipertzis, Athanasios Skandalis, Stergios Pispas, George Floudas
{"title":"Nanophase Segregation Drives Heterogeneous Dynamics in Amphiphilic PLMA-b-POEGMA Block-Copolymers with Densely Grafted Architecture","authors":"Achilleas Pipertzis, Athanasios Skandalis, Stergios Pispas, George Floudas","doi":"10.1002/macp.202470038","DOIUrl":"https://doi.org/10.1002/macp.202470038","url":null,"abstract":"<p><b>Front Cover</b>: In article 2400180 by Achilleas Pipertzis, Athanasios Skandalis, Stergios Pispas, and George Floudas, the nanophase separation in amphiphilic diblock copolymers with a densely grafted macromolecular architecture, was shown to drive heterogeneous dynamics as evidenced by small-angle X-ray scattering, differential scanning calorimetry, and dielectric spectroscopy.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202470038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Front Cover: Macromol. Chem. Phys. 18/2024","authors":"","doi":"10.1002/macp.202470036","DOIUrl":"https://doi.org/10.1002/macp.202470036","url":null,"abstract":"<p><b>Front Cover</b>: Reactively processed multilayered films comprising PBAT nanocomposites not only achieve improved oxygen barrier and dimensional stability at high temperatures but also achieve a higher biodegradation than the neat PBAT film with a similar thickness. The soil–compost mixture after biodegradation of the films is nontoxic. Therefore, the reactively processed composite is a sustainable polymeric material with superior properties and may find packaging or biomedical applications where existing materials cannot be recycled. More details can be found in the article 2400067 by Suprakas Sinha Ray and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202470036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Radiation Assisted Construction of Fused Deposition Modeling 3D Printing Flexible Sensors","authors":"Xueling Hu, Yanling Zheng, Dhandapani Kuzhandaivel, Xiaohong Ding, Lixin Wu, Jianlei Wang, Xianliang Lin, Xiaoyong Hu, Xu Zhang","doi":"10.1002/macp.202400284","DOIUrl":"https://doi.org/10.1002/macp.202400284","url":null,"abstract":"With the rapid development of the internet of things, the simple preparation of sensors has become a challenge. The present work presents the simple preparation of flexible sensors by using the fused deposition modeling (FDM) 3D printing combined with the microwave radiation‐assisted treatment of the thermoplastic polyurethane (TPU) with carbon nanotubes (CNTs) as conductive fillers to create the flexible sensors. The as‐prepared TPU/CNT composites exhibit the 7.27 MPa tensile strength and 401% elongation at break, similar to those of the pure TPU. After 200 tensile cycles, the TPU/CNT composites can still stably convert pressure into electrical signals, which can be used as flexible sensors with high sensitivity (0.879 kPa<jats:sup>−1</jats:sup>). In addition, shoe insoles and finger cover with sensing performance are fabricated through the FDM 3D printing technology, demonstrating the potential of the sensors to monitor human gait, finger straightening, and bending movements. The as‐proposed method involves the embedding CNTs as conductive fillers on the surface of TPU to form the TPU/CNT composite conductive layers on the surface of TPU, which is beneficial for maintaining the elasticity of the polymer matrix. The challenges in preparing stable, low‐cost, and scalable flexible sensors and highlights of the advantages of 3D printing technology in manufacturing flexible piezoresistive sensors are also deeply discussed.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rong Cao, Ryota Nishiyama, Kazuki Nakamura, Norihisa Kobayashi
{"title":"Luminescent Hybrid Material Based on the Europium(III)–β‐Diketone Complex Doped with Smectite","authors":"Rong Cao, Ryota Nishiyama, Kazuki Nakamura, Norihisa Kobayashi","doi":"10.1002/macp.202400208","DOIUrl":"https://doi.org/10.1002/macp.202400208","url":null,"abstract":"Lanthanide‐containing organic–inorganic hybrid materials exhibit considerable potential for applications in optical devices. In this study, efficient luminescent hybrid materials are prepared by employing a straightforward doping method to mix the Eu(tta)<jats:sub>3</jats:sub>phen complex (tta = 2‐thenoyltrifluoroacetone, phen = 1,10‐phenanthroline) with a synthetic clay compound of hectorite (smectite). The comprehensive photophysical properties of dispersion solution containing the Eu(tta)<jats:sub>3</jats:sub>phen/smectite hybrid material are systematically investigated via ultraviolet‐visible absorption spectroscopy, luminescence spectra, luminescence lifetimes, and Judd–Ofelt analysis. The emission properties of the Eu(tta)<jats:sub>3</jats:sub>phen are enhanced by its interaction with smectite. Furthermore, the interaction suppressed the molecular vibration of Eu(tta)<jats:sub>3</jats:sub>phen, resulting in elevated luminescence intensity and quantum efficiency. Moreover, a highly luminescent and transparent polymeric film is prepared by incorporating Eu(tta)<jats:sub>3</jats:sub>phen/smectite hybrid material into a polymer (PMMA) matrix. With the addition of the smectite compound, the transparency and surface smoothness of the polymeric film are improved. Consistent with the solution state, smectite enhanced the luminescence intensity of Eu(tta)<jats:sub>3</jats:sub>phen in the film state. This strategy presents a novel opportunity for high‐luminescence imaging devices.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk
{"title":"Functionalized Polyisobutylene and Polyisobutylene‐Based Block Copolymers by Mechanistic Transformation from Cationic to Radical Process","authors":"Yusra Bahar Cakir, Miraslau Makarevich, Mikalai Bohdan, Tugba Celiker, Maksim Hulnik, Irina V. Vasilenko, Baris Kiskan, Sergei V. Kostjuk","doi":"10.1002/macp.202400261","DOIUrl":"https://doi.org/10.1002/macp.202400261","url":null,"abstract":"The strategy for the preparation of polyisobutylene‐based block copolymers via mechanistic transformation from cationic to radical polymerization is reported. This strategy involves the synthesis of 2‐bromo‐2‐methylpropanoyl‐terminated difunctional polyisobutylene macroinitiator (BiBB‐PIB‐BiBB) via consecutive cationic polymerization, in situ preparation of hydroxyl‐terminated polyisobutylene and its acylation by 2‐bromo‐2‐methylpropanoyl bromide. The Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub>−triggered photo‐induced radical polymerization of styrene in bulk using this macroinitiator leads to the formation of multiblock copolymer, while predominantly triblock copolymer is generated during the polymerization of methyl methacrylate. The possibility to functionalize the polyisobutylene by pyrene via photo‐induced radical addition of 1‐bromomethyl pyrene in the presence of Mn<jats:sub>2</jats:sub>(CO)<jats:sub>10</jats:sub> is also demonstrated in this work.","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142177840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}