Lifestyle Genomics最新文献

筛选
英文 中文
Proteomics and recurrence of atrial fibrillation: a pilot study nested in the PREDIMAR trial.
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2025-01-24 DOI: 10.1159/000543639
Cristina Razquin, Joaquín Fernandez-Irigoyen, María Teresa Barrio-López, Begoña López, Susana Ravassa, Pablo Ramos, Rosa Macías, Alicia Ibañez-Criado, Enrique Santamaria, Leticia Goni, Eduardo Castellanos, José Luis Ibañez-Criado, Luis Tercedor, Ignacio García-Bolao, Miguel A Martínez-González, Jesús Almendral, Miguel Ruiz-Canela
{"title":"Proteomics and recurrence of atrial fibrillation: a pilot study nested in the PREDIMAR trial.","authors":"Cristina Razquin, Joaquín Fernandez-Irigoyen, María Teresa Barrio-López, Begoña López, Susana Ravassa, Pablo Ramos, Rosa Macías, Alicia Ibañez-Criado, Enrique Santamaria, Leticia Goni, Eduardo Castellanos, José Luis Ibañez-Criado, Luis Tercedor, Ignacio García-Bolao, Miguel A Martínez-González, Jesús Almendral, Miguel Ruiz-Canela","doi":"10.1159/000543639","DOIUrl":"https://doi.org/10.1159/000543639","url":null,"abstract":"<p><strong>Introduction: </strong>Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia worldwide. Although catheter ablation is the most efficacious therapy, relapses occur frequently (30%) in the first year after ablation. Novel biomarkers of recurrence are needed for a better prediction of recurrence and management of AF. In this pilot study, we aimed to analyze the baseline proteome of subjects included in a case-control study to find differential proteins associated with AF recurrence.</p><p><strong>Methods: </strong>Baseline serum proteomics (354 proteins) data from 16 cases (recurrent AF) and 17 controls (non-recurrent) were obtained using MS/MS analysis. False discovery rate was performed using a nonlinear fitting method for the selection of proteins. Logistic regression models were used to further analyze the association between differentially expressed proteins and AF recurrence Results: Ten proteins were differentially represented in cases vs controls. Two were upregulated in the cases compared to the controls: keratin type I cytoskeletal 17 (FC=2.14; p=0.017) and endoplasmic bifunctional protein (Fold-change [FC]=1.65; p=0.032). And eight were downregulated in the cases compared to the controls: C4bpA (FC=0.64; p=0.006), coagulation factor XI (FC=0.83; p=0.011), CLIC1 (FC=0.62; p=0.017), haptoglobin (FC=0.37; p=0.021), Ig alpha-2 chain C region (FC=0.49; p=0.022), C4bpB (FC=0.73; p=0.028), N-acetylglucosamine-1-phosphotransferase subunit gamma (FC=0.61; p=0.033) and platelet glycoprotein Ib alpha chain (FC=0.84; p=0.038).</p><p><strong>Conclusion: </strong>This pilot study identifies ten differentially expressed serum proteins associated with AF recurrence, offering potential biomarkers for improved prediction and management.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-12"},"PeriodicalIF":2.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UCP variants are linked to hypercholesterolemia and abdominal obesity in metabolically unhealthy women. UCP变异与代谢不健康女性的高胆固醇血症和腹部肥胖有关。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2025-01-16 DOI: 10.1159/000543484
Erika Sierra-Ruelas, Nathaly Torres-Castillo, Barbara Vizmanos, Wendy Campos Pérez, Erika Martínez-López
{"title":"UCP variants are linked to hypercholesterolemia and abdominal obesity in metabolically unhealthy women.","authors":"Erika Sierra-Ruelas, Nathaly Torres-Castillo, Barbara Vizmanos, Wendy Campos Pérez, Erika Martínez-López","doi":"10.1159/000543484","DOIUrl":"https://doi.org/10.1159/000543484","url":null,"abstract":"<p><strong>Introduction: </strong>It has been reported that even with the same body mass index (BMI), there are subjects with metabolically healthy or unhealthy phenotype. The main determinants of the unhealthy phenotype are the type and distribution of fat, ectopic fat accumulation, genetics, and lifestyle factors. Uncoupling proteins (UCPs) disengage mitochondrial respiration from ATP synthesis and result in heat production, which in turn is related to energy expenditure and, thus, to fat mass accumulation. The association of the UCP1 -3826A/G (rs1800592), UCP2 Ala55Val (rs660339), and UCP3 -55C/T (rs1800849) variants with metabolic variables was evaluated according to metabolic phenotype in Mexican women.</p><p><strong>Methods: </strong>Women aged 18 to 65 years classified as normal weight (NW) or excessive weight (EW) according to their BMI (from 18.5 to <25 kg/m2 for NW, and from 25 to <40 kg/m2 for EW), were included. Participants were classified into two metabolic phenotypes: metabolically healthy or metabolically unhealthy (MH or MUH, respectively) based on ATP-III criteria and the homeostasis model assessment of insulin resistance (HOMA-IR). The genetic variants were determined by allelic discrimination using TaqMan® probes.</p><p><strong>Results: </strong>In participants with the UCP1 -3826A/G variant, an increased risk of hypercholesterolemia was observed in those with the NW-MUH phenotype (OR=5.09, CI=1.03-25.12, p=0.017). The UCP2 Ala55Val variant in EW-MUH subjects was associated with higher abdominal obesity risk (OR=3.23, CI=1.21-8.60, p=0.019), while no associations were found with the UCP3 -55C/T variant.</p><p><strong>Conclusion: </strong>UCP1 and UCP2 variants are related with hypercholesterolemia and visceral fat accumulation in women with MUH phenotype.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-13"},"PeriodicalIF":2.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143007863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nicotine Metabolism-Related Genetic Polymorphisms Associated with Smoking Cessation in Korean Men: A Candidate Gene Association Study in a Korean Cohort. 与韩国男性戒烟相关的尼古丁代谢相关遗传多态性:韩国队列中的候选基因关联研究。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2025-01-13 DOI: 10.1159/000543543
Jae-Min Park, Ja-Eun Choi, Ji-Won Lee, Kyung-Won Hong
{"title":"Nicotine Metabolism-Related Genetic Polymorphisms Associated with Smoking Cessation in Korean Men: A Candidate Gene Association Study in a Korean Cohort.","authors":"Jae-Min Park, Ja-Eun Choi, Ji-Won Lee, Kyung-Won Hong","doi":"10.1159/000543543","DOIUrl":"https://doi.org/10.1159/000543543","url":null,"abstract":"<p><strong>Introduction: </strong>Smoking cessation is influenced by genetic and environmental factors, particularly genetic polymorphisms influencing nicotine metabolism. This study investigated the association between specific nicotine metabolism-related genetic variants and smoking cessation among Korean men.</p><p><strong>Methods: </strong>A candidate gene association study was performed targeting single nucleotide polymorphisms (SNPs) within nicotine metabolism-related genes. Participants were categorized as never, former, or current smokers. A Genetic Risk Score (GRS) was computed using significant SNPs to evaluate cumulative genetic influence.</p><p><strong>Results: </strong>Six SNPs showed significant association with smoking cessation in a Korean cohort. A higher GRS was associated with increased odds of current smoking compared to former smoking (OR = 1.18, 95% CI: 1.12-1.25, P < 0.001).</p><p><strong>Conclusion: </strong>This study indicates a substantial genetic component in smoking cessation, highlighting the importance of population-specific approaches, and may aid personalized smoking cessation strategies based on genetic predisposition among Koreans.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Differentially Methylated Genes amongst Preterm birth and Full-term birth. 早产儿和足月新生儿甲基化基因差异的研究。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2025-01-02 DOI: 10.1159/000543372
Aleem Razzaq, Razan ElKahlout, Gheyath K Nasrallah, Faisal E Ibrahim, Muthanna Samara, Hatem Zayed, Palli Valapila Abdulrouf, Rana Al-Jurf, Ahmed Najjar, Thomas Farrell, M Walid Qoronfleh, Hilal Al Rifai, Nader Al-Dewik
{"title":"Exploring Differentially Methylated Genes amongst Preterm birth and Full-term birth.","authors":"Aleem Razzaq, Razan ElKahlout, Gheyath K Nasrallah, Faisal E Ibrahim, Muthanna Samara, Hatem Zayed, Palli Valapila Abdulrouf, Rana Al-Jurf, Ahmed Najjar, Thomas Farrell, M Walid Qoronfleh, Hilal Al Rifai, Nader Al-Dewik","doi":"10.1159/000543372","DOIUrl":"https://doi.org/10.1159/000543372","url":null,"abstract":"<p><strong>Introduction: </strong>Preterm birth (PTB) is associated with newborn morbidity and mortality. DNA methylation plays an important role in the development of fetus, thus can also serve as an epigenetic biomarker. Limited epigenetic studies were conducted in regard to PTB. Thus, this study aims to determine whether there are any epigenetic changes amongst PTB vs. term birth (TB).</p><p><strong>Methods: </strong>In the current study, a total 218 cord blood samples from three different PTB studies have been carried out to explore differentially methylated sites (DMS) and regions (DMRs) associated with PTB. The differential methylation analysis was done after controlling for multiple covariates like age, gender, and disease status. The DMRs (genes and promoters) and DMS (CpG) were investigated in PTB compared to TB infants.</p><p><strong>Results: </strong>In PTB infants, genes like RNASE3, HGF, CLEC5A, LIPN, NXF1, and CCDC12 showed hypermethylation (p < 0.05) while the MUC20 and IFNL4 genes showed hypomethylation (p < 0.05) along with other significantly identified genes in this analysis. The eForge analysis of hypermethylated (p < 0.05) CpG sites exhibited enrichment in different fetal tissues like small and large intestine, adrenal gland, fetal heart, lungs, and kidney while hypomethylated CpGs showed no significant enrichment. The GO enrichment analysis of these genes revealed pathways associated with the regulation of immune response. Interestingly, the analysis also observed S100A9 and S100A8 genes, along with their associated CpG sites exhibited hypermethylation (p < 0.05) in PTB infants which plays a crucial role in developing neonatal sepsis.</p><p><strong>Conclusion: </strong>Overall, this study revealed differential methylation in immune-related genes related to PTB that could be used as potential epigenetics biomarkers. These findings not only enhance our understanding of PTB pathogenesis but also pave the way for developing innovative diagnostic and therapeutic strategies.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-23"},"PeriodicalIF":2.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guidance and Position of RINN22 regarding Precision Nutrition and Nutriomics. rn22关于精准营养和营养组学的指导和立场。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2025-01-01 Epub Date: 2024-11-30 DOI: 10.1159/000542789
Omar Ramos-Lopez, Taís Silveira Assmann, Elcy Yaned Astudillo Muñoz, Luis Baquerizo-Sedano, Elisa Barrón-Cabrera, Claudio Adrián Bernal, Josefina Bressan, Amanda Cuevas-Sierra, Alberto Dávalos, Ulises De la Cruz-Mosso, Ana Laura De la Garza, Daniel A De Luis, Rocío I Díaz de la Garza, Karina Dos Santos, Roxana Carla Fernández-Condori, Alfredo Fernández-Quintela, Diego F Garcia Diaz, Karina Gonzalez-Becerra, Eliane Lopes Rosado, María-Carmen López de Las Hazas, Bertha Araceli Marín Alejandre, Alberto Angel Martin, Erika Martinez-Lopez, Diego Martínez-Urbistondo, Fermin I Milagro, Helen Hermana M Hermsdorff, Begoña Muguerza, Carolina F Nicoletti, Ana Maria Obregón Rivas, Isela Parra-Rojas, Maria Puy Portillo, José L Santos, Thais Steemburgo, Maria Elizabeth Tejero, Anny Cristina Terán, Victor Treviño, Bárbara Vizmanos, J Alfredo Martinez
{"title":"Guidance and Position of RINN22 regarding Precision Nutrition and Nutriomics.","authors":"Omar Ramos-Lopez, Taís Silveira Assmann, Elcy Yaned Astudillo Muñoz, Luis Baquerizo-Sedano, Elisa Barrón-Cabrera, Claudio Adrián Bernal, Josefina Bressan, Amanda Cuevas-Sierra, Alberto Dávalos, Ulises De la Cruz-Mosso, Ana Laura De la Garza, Daniel A De Luis, Rocío I Díaz de la Garza, Karina Dos Santos, Roxana Carla Fernández-Condori, Alfredo Fernández-Quintela, Diego F Garcia Diaz, Karina Gonzalez-Becerra, Eliane Lopes Rosado, María-Carmen López de Las Hazas, Bertha Araceli Marín Alejandre, Alberto Angel Martin, Erika Martinez-Lopez, Diego Martínez-Urbistondo, Fermin I Milagro, Helen Hermana M Hermsdorff, Begoña Muguerza, Carolina F Nicoletti, Ana Maria Obregón Rivas, Isela Parra-Rojas, Maria Puy Portillo, José L Santos, Thais Steemburgo, Maria Elizabeth Tejero, Anny Cristina Terán, Victor Treviño, Bárbara Vizmanos, J Alfredo Martinez","doi":"10.1159/000542789","DOIUrl":"10.1159/000542789","url":null,"abstract":"<p><strong>Background: </strong>Precision nutrition is based on the integration of individual's phenotypical and biological characteristics including genetic variants, epigenetic marks, gut microbiota profiles, and metabolite fingerprints as well as medical history, lifestyle practices, and environmental and cultural factors. Thus, nutriomics areas including nutrigenomics, nutrigenetics, nutriepigenetics, nutrimetabolomics, and nutrimetagenomics have emerged to comprehensively understand the complex interactions between nutrients, diet, and the human body's molecular processes through precision nutrition.</p><p><strong>Summary: </strong>This document from the Ibero-American Network of Nutriomics and Precision Nutrition (RINN22; <ext-link ext-link-type=\"uri\" xlink:href=\"https://rinn22.com/\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">https://rinn22.com/</ext-link>) provides a comprehensive overview of the concepts of precision nutrition approaches to guide their application in clinical and public health as well as establish the position of RINN22 regarding the current and future state of precision nutrition.</p><p><strong>Key messages: </strong>The progress and participation of nutriomics to precision nutrition is an essential pillar for addressing diet-related diseases and developing innovative managing strategies, which will be promoted by advances in bioinformatics, machine learning, and integrative software, as well as the description of specific novel biomarkers. In this context, synthesizing and critically evaluating the latest developments, potential applications, and future needs in the field of nutrition is necessary with a holistic perspective, incorporating progress in omics technologies aimed at precision nutrition interventions. This approach must address and confront healthy, social, food security, physically active lifestyle, sanitation, and sustainability challenges with preventive, participatory, and predictive strategies of personalized, population, and planetary nutrition for a precision tailored health.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-19"},"PeriodicalIF":2.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142770311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum. 勘误。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2024-05-17 DOI: 10.1159/000539272
{"title":"Erratum.","authors":"","doi":"10.1159/000539272","DOIUrl":"10.1159/000539272","url":null,"abstract":"","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"17 1","pages":"41"},"PeriodicalIF":2.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of gut bacterial profiling information in precision nutrition for obesity and weight loss management 肠道细菌分析信息在肥胖和减肥管理精准营养中的应用
IF 2.6 4区 医学
Lifestyle Genomics Pub Date : 2024-01-12 DOI: 10.1159/000536156
O. Ramos-López, P. Aranaz, J. Riezu-Boj, F. Milagro
{"title":"Application of gut bacterial profiling information in precision nutrition for obesity and weight loss management","authors":"O. Ramos-López, P. Aranaz, J. Riezu-Boj, F. Milagro","doi":"10.1159/000536156","DOIUrl":"https://doi.org/10.1159/000536156","url":null,"abstract":"Background: It has been suggested that the dysfunction of the gut microbiome can have deleterious effects on the regulation of body weight and adiposity by affecting energy metabolism. In this context, gut bacterial profiling studies have contributed to characterize specific bacteria associated with obesity. This review covers the information driven by gut bacterial profiling analyses and emphasizes the potential application of this knowledge in precision nutrition strategies for obesity understanding and weight loss management.\u0000Summary: Gut bacterial profiling studies have identified bacterial families that are more abundant in obese than in non-obese individuals (i.e. Prevotellaeae, Ruminococcaceae, and Veillonellaceae) as well as other families that have been repeatedly found more abundant in non-obese people (i.e. Christensenellaceae and Coriobacteriaceae), suggesting that an increase in their relative amount could be an interesting target in weight-loss treatments. Also, some gut-derived metabolites have been related to the regulation of body weight, including short chain fatty acids (SCFA), trimethylamine-N-oxide (TMAO), and branched-chain and aromatic amino acids. Moreover, gut microbiota profiles may play a role in determining weight loss responses to specific nutritional treatments for the precise management of obesity. Thus, incorporating gut microbiota features may improve the performance of integrative models to predict weight loss outcomes.\u0000Key Messages: The application of gut bacterial profiling information is of great value for precision nutrition in metabolic diseases, since it contributes to the understanding of the role of the gut microbiota in obesity onset and progression, facilitates the identification of potential microorganism targets, and allows the personalization of tailored weight loss diets as well as the prediction of adiposity outcomes based on the gut bacterial profiling of each individual. Integrating microbiota information with other omics knowledge (genetics, epigenetics, transcriptomics, proteomics, and metabolomics) may provide a more comprehensive understanding of the molecular and physiological events underlying obesity and adiposity outcomes for precision nutrition. \u0000","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"1 12","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139437913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Molecular Basis of Olfactory Dysfunction in COVID-19 and Long COVID. COVID-19 和长 COVID 嗅觉功能障碍的分子基础
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2024-01-01 Epub Date: 2024-05-15 DOI: 10.1159/000539292
Cleo Anastassopoulou, Nikolaos Davaris, Stefanos Ferous, Nikolaos Siafakas, Fotini Boufidou, Konstantinos Anagnostopoulos, Athanasios Tsakris
{"title":"The Molecular Basis of Olfactory Dysfunction in COVID-19 and Long COVID.","authors":"Cleo Anastassopoulou, Nikolaos Davaris, Stefanos Ferous, Nikolaos Siafakas, Fotini Boufidou, Konstantinos Anagnostopoulos, Athanasios Tsakris","doi":"10.1159/000539292","DOIUrl":"10.1159/000539292","url":null,"abstract":"<p><p>Olfactory dysfunction (OD) is not uncommon following viral infection. Herein, we explore the interplay of host genetics with viral correlates in coronavirus disease 2019 (COVID-19)- and long COVID-related OD, and its diagnosis and treatment that remain challenging. Two genes associated with olfaction, UGT2A1 and UGT2A2, appear to be involved in COVID-19-related anosmia, a hallmark symptom of acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), particularly in the early stages of the pandemic. SARS-CoV-2 infects olfactory support cells, sustentacular and Bowman gland cells, that surround olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) where the initial step of odor detection takes place. Anosmia primarily arises from the infection of support cells of the OE, followed by the deciliation and disruption of OE integrity, typically without OSN infection. Through the projected axons of OSNs, the virus could theoretically reach the olfactory bulb and brain, but current evidence points against this route. Intriguingly, SARS-CoV-2 infection of support cells leads to profound alterations in the nuclear architecture of OSNs, leading to the downregulation of odorant receptor-related genes, e.g., of Adcy3. Viral factors associated with the development of OD include spike protein aminoacidic changes, e.g., D614G, the first substitution that was selected early during SARS-CoV-2 evolution. More recent variants of the Omicron family are less likely to cause OD compared to Delta or Alpha, although OD has been associated with a milder disease course. OD is one of the most prevalent post-acute neurologic symptoms of SARS-CoV-2 infection. The tens of millions of people worldwide who have lingering problems with OD wait eagerly for effective new treatments that will restore their sense of smell which adds value to their quality of life.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"42-56"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140945189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute Administration of Calafate (Berberis microphylla) Extract Induces the Expression of Thermogenic Markers and Modulates Gut Microbiota in Mice Fed a High-Fat Chow Diet. 急性服用卡拉法特(小檗)提取物可诱导高脂饲料喂养的小鼠体内生热标记物的表达并调节肠道微生物群。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2024-01-01 Epub Date: 2024-06-18 DOI: 10.1159/000539881
Lissette Duarte, Vanessa Villanueva, Robert Barroux, Juan Francisco Orellana, Carlos Poblete-Aro, Martin Gotteland, Mauricio Castro, Fabien Magne, Diego F Garcia-Diaz
{"title":"Acute Administration of Calafate (Berberis microphylla) Extract Induces the Expression of Thermogenic Markers and Modulates Gut Microbiota in Mice Fed a High-Fat Chow Diet.","authors":"Lissette Duarte, Vanessa Villanueva, Robert Barroux, Juan Francisco Orellana, Carlos Poblete-Aro, Martin Gotteland, Mauricio Castro, Fabien Magne, Diego F Garcia-Diaz","doi":"10.1159/000539881","DOIUrl":"10.1159/000539881","url":null,"abstract":"<p><strong>Introduction: </strong>Obesity, characterized by excess adipose tissue, is a major public health problem worldwide. Brown adipose tissue (BAT) and beige adipose tissue participate in thermogenesis through uncoupling protein 1 (UCP1). Polyphenols including those from Calafate (a native polyphenol-rich Patagonian berry), are considered as potential anti-obesity compounds due to their pro-thermogenic characteristics. However, polyphenols are mainly metabolized by the gut microbiota (GM) that may influence their bioactivity and bioavailability. The aim of this study was to determine the impact of dietary administration with a Calafate polyphenol-rich extract on thermogenic activity of BAT and beige adipose tissue and GM composition.</p><p><strong>Methods: </strong>Eight-week-old C57BL6 mice (n = 30) were divided into 4 groups to receive for 24 weeks a control diet (C), a high-fat diet alone (HF), or high-fat diet supplemented with Calafate extract (HFC) or the same high-fat diet supplemented with Calafate extract but treated with antibiotics (HFCAB) from week 19-20. Administration with Calafate extract (50 mg/kg per day) was carried out for 3 weeks from week 21-23 in the HFC and HFCAB groups. After euthanasia, gene expression of thermogenic markers was analyzed in BAT and inguinal white adipose tissue (iWAT). Transmission electron microscopy was performed to assess mitochondrial morphology and cristae density in BAT. GM diversity and composition were characterized by deep sequencing with the MiSeq Illumina platform.</p><p><strong>Results: </strong>Calafate extract administration had no effect on weight gain in mice fed a high-fat diet. However, it prevented alterations in mitochondrial cristae induced by HFD and increased Dio2 expression in BAT and iWAT. The intervention also influenced the GM composition, preventing changes in specific bacterial taxa induced by the high-fat diet. However, the antibiotic treatment prevented in part these effects, suggesting the implications of GM.</p><p><strong>Conclusion: </strong>These results suggest that the acute administration of a Calafate extract modulates the expression of thermogenic markers, prevents alterations in mitochondrial cristae and intestinal microbiota in preclinical models. The study highlights the complex interaction between polyphenols, thermogenesis, and the GM, providing valuable insights into their potential roles in the treatment of obesity-related metabolic diseases.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"72-81"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
17th ISNN Congress, 5-7 December 2024, Juhu, Mumbai, India: Precision Nutrition in Nutritional Deficiencies & Optimal Health. 第 17 届 ISNN 大会,2024 年 12 月 5-7 日,印度孟买朱胡:营养缺乏和最佳健康中的精准营养。
IF 2 4区 医学
Lifestyle Genomics Pub Date : 2024-01-01 Epub Date: 2024-11-25 DOI: 10.1159/000542462
Louis Pérusse
{"title":"17th ISNN Congress, 5-7 December 2024, Juhu, Mumbai, India: Precision Nutrition in Nutritional Deficiencies & Optimal Health.","authors":"Louis Pérusse","doi":"10.1159/000542462","DOIUrl":"https://doi.org/10.1159/000542462","url":null,"abstract":"","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"17 1","pages":"136-150"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信