Zeyu Yang, Ruslan Kubant, Eva Kranenburg, Clara E Cho, G Harvey Anderson
{"title":"Experimental environment is a determinant of gene methylation and one-carbon metabolism in obese adult mice.","authors":"Zeyu Yang, Ruslan Kubant, Eva Kranenburg, Clara E Cho, G Harvey Anderson","doi":"10.1159/000546727","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diet-induced obesity (DIO) leads to insulin resistance (IR) and alters gene expression through epigenetic mechanisms, including DNA methylation. Here, we aimed to investigate whether experimental environment is an important variable in determining DNA methylation and one-carbon metabolism in DIO mice fed a multi-vitamin-mineral mixture (MVM).</p><p><strong>Methods: </strong>Three experiments with identical design were conducted in three independent animal facilities (i.e. experimental environments or locations). In each location, 12-week-old male C57BL/6J mice were randomly assigned to two dietary groups: high-fat (HF) and HF-MVM for an average of 10 weeks. Global and gene-specific methylation of adipose function related genes in epididymal white adipose tissue (eWAT), and insulin signaling genes in the liver were analyzed using bisulfite pyrosequencing. Hepatic 1-C metabolites were measured and the ratio of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) was used as an indicator of methylation potential.</p><p><strong>Results: </strong>Experimental location affected global methylation patterns in eWAT, but not in the liver. At the gene-specific level, experimental location, MVM, and their interaction altered the methylation of genes related to adipose function (Srebf1, Acaca, Fasn, Pparg, and Rbp4) in eWAT and insulin signaling (Pi3kr1 and Akt1) in the liver (P < 0.05). The SAM/SAH ratio was correlated with gene-specific methylation at some CpG sites of Srebf1, Pi3kr1, Acaca, Fasn, Pparg, Rbp4, and Akt1) genes (P < 0.05).</p><p><strong>Conclusion: </strong>The experimental environment is a significant determinant of the effects of micronutrient supplement on 1-C metabolism and the methylation of genes associated with IR in tissues of DIO adult male mice.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":" ","pages":"1-24"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000546727","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diet-induced obesity (DIO) leads to insulin resistance (IR) and alters gene expression through epigenetic mechanisms, including DNA methylation. Here, we aimed to investigate whether experimental environment is an important variable in determining DNA methylation and one-carbon metabolism in DIO mice fed a multi-vitamin-mineral mixture (MVM).
Methods: Three experiments with identical design were conducted in three independent animal facilities (i.e. experimental environments or locations). In each location, 12-week-old male C57BL/6J mice were randomly assigned to two dietary groups: high-fat (HF) and HF-MVM for an average of 10 weeks. Global and gene-specific methylation of adipose function related genes in epididymal white adipose tissue (eWAT), and insulin signaling genes in the liver were analyzed using bisulfite pyrosequencing. Hepatic 1-C metabolites were measured and the ratio of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) was used as an indicator of methylation potential.
Results: Experimental location affected global methylation patterns in eWAT, but not in the liver. At the gene-specific level, experimental location, MVM, and their interaction altered the methylation of genes related to adipose function (Srebf1, Acaca, Fasn, Pparg, and Rbp4) in eWAT and insulin signaling (Pi3kr1 and Akt1) in the liver (P < 0.05). The SAM/SAH ratio was correlated with gene-specific methylation at some CpG sites of Srebf1, Pi3kr1, Acaca, Fasn, Pparg, Rbp4, and Akt1) genes (P < 0.05).
Conclusion: The experimental environment is a significant determinant of the effects of micronutrient supplement on 1-C metabolism and the methylation of genes associated with IR in tissues of DIO adult male mice.
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.