{"title":"4-Amino modified derivatives of cytidine towards interactions with the methyltransferase enzyme","authors":"Parnia Abyar Ghamsari, M. Samadizadeh","doi":"10.3233/mgc-210185","DOIUrl":"https://doi.org/10.3233/mgc-210185","url":null,"abstract":"By the importance of exploring novel compounds for inhibiting the cancerous enzymes activities, this work was performed to recognize advantages of employing 4-amino modified derivatives of cytidine for participating in more efficient interactions with the methyltransferase (MTN) cancerous enzyme target. To this aim, four groups of modified models of cytidine were investigated in addition the original models to recognize the structural features and the corresponding activities. The 4-amino site of cytidine was functionalized by different carbon-based groups in linear and cyclic modes through a bridging peptide linkage. The models were optimized to reach the minimized energy structures by performing quantum chemical calculations and their interactions with the target were analyzed by performing molecular docking simulations. The obtained results of 4-amino modified derivatives of cytidine showed advantages of employing structural modifications to find structures with better molecular orbital based features. Formations of interacting complexes indicated that the additional of carbon-based groups helped to improve possibility of interactions between the substances in both of chemical and physical modes. As a remarkable achievement of this work, the model of cytidine with a phenyl group showed the best advantage of participating in interactions with the MTN target among all twenty five models of the investigated cytidine compounds.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"86 3 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86463152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of insecticide detoxification enzymes activities in Aedes aegypti mosquito, the vector of dengue fever in Saudi Arabia","authors":"Abdullah G. Algamdi, J. Mahyoub","doi":"10.3233/mgc-210184","DOIUrl":"https://doi.org/10.3233/mgc-210184","url":null,"abstract":"In this study, the sensitivity of Aedes aegypti mosquitoe larvae to four types of pesticides two phosphorous-based and two pyrethroid insecticides was investigated. The larvae revealed approximately 1.126-fold more susceptibility to Safrotin (LC50 = 0.127 ppm) than Fendure (LC50 = 0.143) in the case of phosphorous-based pesticides and approximately 1.265-fold more susceptibility to AlphaQuest (LC50 = 0.0347 ppm) than Klash (LC50 = 0.0439) in the case of pyrothroid insecticides. Comparison between groups revealed that AlphaQuest was more effective than Klash, Safrotin and Fendure by approximately 1.3, 3.6 and 4.1-fold, respectively. The presence of enzyme activities relevant to insecticide resistance was often evaluated using enzyme assays to detect the underlying resistance mechanisms that may not be detected using bioassays. In this study, the results revealed significant decrease in the activity of esterase, glutathione- S- transferase and acetylcholine esterase enzymes to varying degrees. There were significant increases in catalase and total glutathione activity in all treatments compared to the control. The study concluded that this variation in enzyme activities is due to the type and purity of the additive compound and the source and purity of the active ingredient. The study recommends using the catalase enzyme and total glutathione as a biomarker indication for pesticide synergistic intoxication in aquatic animals.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"35 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72475734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shesh Nath Yadav, B. Kumar, R. Yadav, Pooja S. Singh, S. K. Gupta, Satyam Singh, Chandani Singh, Surabhi Chaubey, A. Singh
{"title":"Synthesis of highly efficient selenium oxide hybridized g-C3N4 photocatalyst for NADH/NADPH regeneration to facilitate solar-to-chemical reaction","authors":"Shesh Nath Yadav, B. Kumar, R. Yadav, Pooja S. Singh, S. K. Gupta, Satyam Singh, Chandani Singh, Surabhi Chaubey, A. Singh","doi":"10.3233/mgc-210189","DOIUrl":"https://doi.org/10.3233/mgc-210189","url":null,"abstract":"An inexpensive graphitic carbon nitrite (g-C3N4) photocatalyst was hybridized with selenium oxide (SeO2) photocatalyst by a monolayer-dispersed technique. After hybridization of g-C3N4 with SeO2, the NADH/NADPH regeneration efficiency of SeO2 photocatalyst was enhanced under solar light illumination was observed. The photocatalytic activity of SeO2/g-C3N4 photocatalyst under solar light illumination was enhanced by 3-fold higher than g-C3N4 photocatalyst, the solar light photocatalytic activity was produced and the photo-decomposition of SeO2 photocatalyst was completely stifled after hybridized SeO2 photocatalyst by g-C3N4 photocatalyst. The improvement in performance and photo-decomposition inhibition under solar light illumination was persuaded by efficiency separation of photo-persuaded holes from SeO2 to the valence bond (V.B.)/highest occupied molecular orbital (HOMO) of g-C3N4 under solar light illumination, the electron jumped from the V.B. to the conduction band (C.B.)/lowest unoccupied molecular orbital (LUMO) of g-C3N4 could directly insert into the C.B. of SeO2 photocatalyst, synthesized SeO2/g-C3N4 photocatalyst is highly active for NADH/NADPH regeneration under solar light.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84542892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Ansari, S. Jasim, A. Abed, Usama S. Altimari, G. Yasin, Wanich Suksatan, Khulood H. Oudaha, M. Kadhim, Abdullah Hasan Jabbar, Yasser Fakri Mustafa
{"title":"Double chelation of Iron through dimer formation of favipiravir: Density functional theory analysis","authors":"M. J. Ansari, S. Jasim, A. Abed, Usama S. Altimari, G. Yasin, Wanich Suksatan, Khulood H. Oudaha, M. Kadhim, Abdullah Hasan Jabbar, Yasser Fakri Mustafa","doi":"10.3233/mgc-210182","DOIUrl":"https://doi.org/10.3233/mgc-210182","url":null,"abstract":"This work was performed to examine an idea about full chelation of Iron (Fe) by well-known favipiravir (Fav) as a possible mechanism of action for medication of COVID-19 patients. To this aim, formations of Fe- mediated dimers of Fav were investigated by performing density functional theory (DFT) computations of electronic and structural features for singular and dimer models. The results indicated that the models of dimers were suitable for formation, in which two cis (D1) and trans (D2) models were obtained regarding the configurations of two Fav counterparts towards each other. Energy results indicated that formation of D1 was slightly more favorable than formation of D2. Molecular orbital features affirmed hypothesized interacting sites of Fav for Fe-mediated dimers formations, in which atomic charges and other molecular orbital related representations affirmed such achievements. Moreover, detection of such dimer formation was also possible by monitoring variations of molecular orbitals features. As a consequence, formations of Fe-mediated dimers of Fav could be achievable for possible removal of excess of Fe as a proposed mechanism of action for Fav in medication of COVID-19 patients.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"7 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79088916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on imperatorin extracted from Angelica dahurica and its UV photocatalytic reaction with collagen","authors":"W. Jiang, Xiaohua Zhou, Ke Ni","doi":"10.3233/mgc-210179","DOIUrl":"https://doi.org/10.3233/mgc-210179","url":null,"abstract":"Soxhlet extraction method was used to extract imperatorin from Angelica dahurica, and the extraction ratio under different extraction condition was optimized to attain the best condition. Then, XAD-16 macroporous resin was selected as the optimal resin to boost the extraction ratio of imperatorin. Afterwards, the higher purity of imperatorin (96.84±0.2%) was separated by preparative HPLC system. Next, the photocatalytic reaction between the above imperatorin and collagen which the highest levels in skin was investigated using UV-vis spectroscopy, amino acid analysis and HPLC analysis. The results showed that imperatorin reacted with collagen only under ultraviolet light which caused the denaturation of collagen, and three new products were generated. The ultraviolet products were isolated by preparative HPLC system and separately detected by high-resolution mass spectrum. The possible UV photocatalytic reaction mechanism between imperatorin and collagen is that ultraviolet light induces the increase of the activity of the imperatorin to react with the tyrosine in the collagen, resulted in the denaturation of collagen and reestablish of the normal epidermal tissue in skin.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"43 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76421364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance improvement for organic light emitting diodes by changing the position of mixed-interlayer","authors":"P. Maurya, P. Mittal, B. Kumar","doi":"10.3233/mgc-210173","DOIUrl":"https://doi.org/10.3233/mgc-210173","url":null,"abstract":"Organic Light-Emitting Diode (OLED) is presently the most sought-after display technology. It provides low-cost, flexible, rollable displays in addition to wide viewing angles and excellent colour qualities. Still, the organic displays have not reached at their best performance and there is a lot of scope for improvement in their performance. In addition to the injection layer, emission layer, transport layer, etc, researchers are looking forward to the charge carrier transport layer, spacer layer, mixed interlayer, etc. to further enhance the device performance. In this article, a depth analysis related to the impact of the position of the mixed interlayer is performed to analyze the impact on device performance. It is observed that on shifting mixed interlayer (MI) towards the cathode; luminescence and current density depict depreciation. However, on shifting MI towards anode there is a significant performance improvement. The complete analysis includes seven device structures, wherein the position of MI is varied. The best performing device depicts luminescence of 17139 cd/m2 and a current density of 84.6 mA/cm2, which is 40.05% higher for luminescence and 111.5% for current density than that of reference device. Additionally, the internal analysis of device structure is thoroughly evaluated using the cut line method to better understand the internal device physics in terms of the electric field, electron concentration, total current density, Langevin’s recombination rate, and Singlet exciton density.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"5 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84674336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Density functional theory investigation of ozone gas uptake by a BeO nanoflake","authors":"S. Jasim, G. Yasin, M. J. Ansari, K. Zarifi","doi":"10.3233/mgc-210147","DOIUrl":"https://doi.org/10.3233/mgc-210147","url":null,"abstract":"Due to importance of the gas uptake topic in environment and energy issues, this work was performed for investigating ozone (Oz) gas uptake by means of a beryllium oxide (BeO) nanoflake. To this aim, density functional theory (DFT) calculations and the quantum theory of atoms in molecules (QTAIM) analysis were performed. The monolayer BeO nanoflake was decorated by a HEME-like N4Fe region to prepare an interacting region towards the Oz uptake. Accordingly, three models were optimized based on configurations of Oz molecule relaxation at the BeO surface, in which two types of O ... Fe and O ... N interactions were observed. In this case, Oz3@BeO model was involved with two mentioned types of interactions and three occurred interaction between Oz and BeO making it as the strongest bimolecular formation model of Oz@BeO. Moreover, electronic molecular orbital features indicated that the models formations could be also related to sensor functions by variations of electric conductivity because of Oz gas uptake. As a consequence, the investigated BeO nanoflake of this work was proposed for employing in Oz gas uptake for different purposes.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"33 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85812522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Jalil, Usama S. Altimari, M. J. Ansari, A. Mohamadi
{"title":"Exploring curcumin interactions with BN nanostructures: A DFT approach","authors":"A. Jalil, Usama S. Altimari, M. J. Ansari, A. Mohamadi","doi":"10.3233/mgc-210151","DOIUrl":"https://doi.org/10.3233/mgc-210151","url":null,"abstract":"Density functional theory (DFT) calculations were performed to investigate the curcumin adsorption at the surfaces of two boron nitride (BN) nanostructures including nanosheet (BNNS) and nanotube (BNNT). The singular models were optimized to reach the stabilized structures and to evaluate electronic features. Next, performing optimization processes on interacting systems yielded formations of bimolecular complexes through occurrence of physical interactions. For curcumin, keto and enol tautomeric forms were investigated for participating in interactions with the BN nanostructures, in which the enol form was seen for participating in stronger interactions with both of BNNS and BNNT surfaces in comparison with the keto form. Based on such interactions, electronic molecular orbital features detected the effects of molecular communications to show benefit of employing BN nanostructures for drug delivery purposes. Moreover, BNNS was seen to work better than BNNT for such purpose of adsorption and detection of curcumin substance.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"111 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79199126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Jasim, H. H. Kzar, A. Jalil, M. Kadhim, M. Mahmoud, M. Al-Gazally, Hind Ali Nasser, Z. Ahmadi
{"title":"DFT investigation of BN, AlN, and SiC fullerene sensors for arsine gas detection and removal","authors":"S. Jasim, H. H. Kzar, A. Jalil, M. Kadhim, M. Mahmoud, M. Al-Gazally, Hind Ali Nasser, Z. Ahmadi","doi":"10.3233/mgc-210145","DOIUrl":"https://doi.org/10.3233/mgc-210145","url":null,"abstract":" Quantum chemical density functional theory (DFT) calculations were performed to investigate the adsorption of arsine (AsH3) gaseous substance at the surface of representative models of boron nitride (B16N16), aluminum nitride (Al16N16), and silicon carbide (Si16C16) fullerene-like nanocages. The results indicated that the adsorption processes of AsH3 could be taken place by each of B16N16, Al16N16, and Si16C16 nanocages. Moreover, the electronic molecular orbital properties indicated that the electrical conductivity of nanocages were changed after the adsorption processes enabling them to be used for sensor applications. To analyze the strength of interacting models, the quantum theory of atoms in molecules (QTAIM) was employed. As a typical achievement of this work, it could be mentioned that the investigated Si16C16 fullerene-like nanocage could work as a suitable adsorbent for the AsH3 gaseous substance proposing gas-sensor role for the Si16C16 fullerene-like nanocage.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"75 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90592780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Nikbakht, B. Omidi, Mohammad Ali Amozegar, K. Amini
{"title":"Isolation and identification of Streptomyces tunisiensis from Garmsar salt cave soil with antibacterial and gene expression activity against Pseudomonas aeruginosa","authors":"M. Nikbakht, B. Omidi, Mohammad Ali Amozegar, K. Amini","doi":"10.3233/mgc-210172","DOIUrl":"https://doi.org/10.3233/mgc-210172","url":null,"abstract":"It is known that more than 70% of the current antibiotics have been produced by Streptomyces; therefore, the main goal of the present study was to isolate halophiles Streptomyces to investigate their antimicrobial properties on the expression of the pathogenic genes of clinically resistant Pseudomonas aeruginosa. To this aim, isolation of Streptomyces from soil was performed by serial dilution method, and cultivation on ISP2 and SCA medium. The secondary metabolite was extracted by ethyl acetate method. The presence of exo A, alg D and oprl genes were determined by PCR in 50 clinical isolates of Pseudomonas aeruginosa. The inhibitory effect of active metabolites on gene expression were investigated by employing the real-time PCR technique. The purification of secondary metabolites were performed by employing the HPLC technique. Moreover, the FTIR technique was employed to determine the functional groups to help performing identifications by employing the LC-MS technique. Finally, selected Streptomyces was identified by 16S ribosomal RNA gene. Accordingly, the possible forms of Streptomyces were isolated and identified, in which Streptomyces number 25 had the highest growth inhibition zone against the clinical strains of Pseudomonas aeruginosa. The obtained results of molecular analysis showed 95.4% similarity to Streptomyces tunisiensis. The effect of selected Streptomyces secondary metabolites reduced expressions of both of exo A and algD genes in 1024μg/mL concentration. In this regard, the potent fraction could be known as an isobutyl Nonactin analogue. The concluding remarks of this work showed the antimicrobial activity of halophilus Streptomyces species against the resistant strains of Pseudomonas aeruginosa with the ability of producing antibiotics proposing for running further investigations to determine the active compound structures.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"47 4","pages":""},"PeriodicalIF":1.5,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72629664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}