{"title":"The Synthesis of Nanophosphors YPxV1–xO4 by Spray Pyrolysis and Microwave Methods","authors":"E. Tomina, Dmitry A. Lastochkin, S. A. Maltsev","doi":"10.17308/kcmf.2020.22/3120","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/3120","url":null,"abstract":"Due to rare earth doping, phosphates and vanadates are the leading materials for the synthesis of phosphors due to their thermal stability, low sintering temperature, and chemical stability. Phosphors in the nanoscale state are of particular interest. The simple, fast, and scalable synthesis of nanophosphors with high chemical homogeneity is a priority task. The purpose of this work was to synthesize powders of mixed yttrium vanadate-phosphate crystals of various compositions by coprecipitation under the action of microwave radiation and spray pyrolysis, as well as to compare the characteristics ofthe obtained samples. Samples of YVхP1–хO4 of different compositions were synthesized by coprecipitation under the action of microwave radiation and spray pyrolysis in different modes. In the case of the synthesis of yttrium vanadate-phosphate YVхP1–хO4 by spray pyrolysis followed by annealing, according to the X-ray phase analysis data, single-phase nanopowders were formed. The morphological characteristics of the samples were revealed by the methods of transmission electron microscopy and scanning electron microscopy. Depending on the annealing conditions, the samples were either faceted or spherical particlesless than 100 nm in size. The composition of the YVхP1–хO4 , samples synthesized by the coprecipitation method under the action of microwave radiation strongly depended on the pH of the precursor solution. The minimum content of impurity phases was reached at pH 9.Spray pyrolysis allows the synthesis of yttrium vanadate phosphate YVхP1–хO4 nanopowders of high chemical homogeneity with a particle size of less than 100 nm. The maximum chemical homogeneity of yttrium vanadate-phosphate powders was achieved at pH = 9 during the synthesis of YVхP1–хO4 by coprecipitation under the action of microwave radiation. However, the particle size dispersion was large, within the range of 2–60 μm. \u0000 \u0000 \u0000 \u0000References \u00001. Wu C., Wang Y., Jie W. Hydrothermal synthesisand luminescent properties of LnPO4:Tb (Ln = La, Gd)phosphors under VUV excitation. Journal of Alloys andCompounds. 2007;436: 383–386. DOI: https://doi.org/10.1016/j.jallcom.2006.07.0562. Huang J., Tang L., Chen N., Du G. Broadeningthe photoluminescence excitation spectral bandwidthof YVO4:Eu3+ nanoparticles via a novel core-shell andhybridization approach. Materials. 2019;12: 3830. DOI:https://doi.org/10.3390/ma122338303. Wu Y., Zhang Z., Suo H., Zhao X., Guo C. 808 nmlight triggered up-conversion optical nano-thermometerYPO4:Nd3+/Yb3+/Er3+ based on FIR technology.Journal of Luminescence. 2019;214: 116478. DOI:https://doi.org/10.1016/j.jlumin.2019.1165784. Xiu Z., Wu Y., Hao X., Li X., Zhang L. Uniformand well-dispersed Y2O3:Eu/YVO4:Eu composite microsphereswith high photoluminescence prepared bychemical corrosion approach. Colloids Surf. A.2012;401(5): 68–73. DOI: https://doi.org/10.1016/j.colsurfa.2012.03.0215. Vats B. G., Gupta S. K., Keskar M., Phatak R.,Mukherjee S., Kannan S. The effect of van","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77725143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Gan'shina, V. Garshin, N. S. Builov, Nikolay N. Zubar, A. Sitnikov, E. Domashevskaya
{"title":"Investigation of the Magnetic Properties of Amorphous Multilayer Nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 by the Transversal Kerr Effect","authors":"E. Gan'shina, V. Garshin, N. S. Builov, Nikolay N. Zubar, A. Sitnikov, E. Domashevskaya","doi":"10.17308/kcmf.2020.22/3114","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/3114","url":null,"abstract":"Magnetic properties in amorphous multilayer nanostructures [(CoFeB)60C40/SiO2]200 and [(CoFeB)34(SiO2)66/C]46 with different content of the CoFeB magnetic alloy in metal-composite layers and inverse location of non-metallic phases C and SiO2 in composite layers or in interlayers, were investigated by magneto-optical methods in the transversal Kerr effect (TKE) geometry.Using the spectral and field dependences of the transversal Kerr effect TKE, it has been established that in the samples of both magnetic multilayer nanostructures (MLNS) the magneto-optical response and magnetic order are determined by the phase composition of the composite layers.In samples of MLNS [(CoFeB)60C40/SiO2]200 with a post-percolation content of metal clusters in metal-composite layers, the maximum of absolute TKE values decrease by about 2.5 times compared with the initial amorphous Co40Fe40B20 alloy, while the field dependences of TKE in samples of this MLNS has features that are characteristic of soft ferromagnets.In samples of MLNS [(CoFeB)34(SiO2)66/C]46 with a pre-percolation content of metal clusters in the oxide SiO2–x matrix of metal-composite layers, the TKE spectral dependences fundamentally differed from the TKE of the initial amorphous Co40Fe40B20 alloy both in shape and sign. The field dependences of the TKE in the samples of this MLN were linear, characteristic of superparamagnets. \u0000 \u0000 \u0000 \u0000References1. Neugebauer C. A. Resistivity of cermet filmscontaining oxides of silicon. Thin Solid Films. 1970;6(6):443–447. DOI: https://doi.org/10.1016/0040-6090(70)90005-22. Gittleman J. L., Goldstain Y., Bozowski S.Magnetic roperties of granular nikel films. PhysicalReview B. 1972;5(9): 3609–3621. DOI: https://doi.org/10.1103/physrevb.5.36093. Abeles B., Sheng P., Coutts M. D., Arie Y.Structural and electrical properties of granular metalfilms. Advances in Physics. 1975;24(3): 407–461. DOI:https://doi.org/10.1080/000187375001014314. Helman J. S., Abeles B. Tunneling of spinpolarizedelectrons and magnetoresistance in granularNi films. Physical Review Letters. 1976;37(21): 1429–1433. DOI: https://doi.org/10.1103/physrevlett.37.14295. Sheng P., Abeles B., Arie Y. Hopping conductivityin granular Metals. Physical Review Letters,1973;31(1):44–47. DOI: https://doi.org/10.1103/physrevlett.31.446. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. A., Sitnikov V. G. Electronic structure andphase composition of dielectric interlayers inmultilayer amorphous nanostructure [(CoFeB)60C40/SiO2]200. Physics of the Solid State. 2017;59(1): 168–173.DOI: https://doi.org/10.1134/S10637834170100617. Domashevskaya E. P., Builov N. S., Terekhov V. A.,Barkov K. I., Sitnikov V. G., Kalinin Y. E. Electronicstructure and phase composition of silicon oxide inthe metal-containing composite layers of a[(Co40Fe40B20)34(SiO2)66/C]46 multilayer amorphousnanostructure with carbon interlayers. InorganicMaterials. 2017;53(9): 930–936. DOI: https://doi.org/10.1134/S00201685170900608. Domashev","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72891767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microwave Synthesis of CaTiO3 Nanoparticles by the Sol-Gel Method","authors":"V. F. Kostryukov, A. E. Igonina","doi":"10.17308/kcmf.2020.22/3121","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/3121","url":null,"abstract":"A technique for the microwave-activated synthesis of calcium titanate nanopowder was proposed. The microwave effect used in the synthesis of CaTiO3 samples when using sodium carbonate as a precipitant allowed obtaining a chemically homogeneous nanopowder with a significant reduction of the process time. \u0000 \u0000 \u0000 \u0000References1. Zhang Q., Saito F. Effect of Fe2O3 crystallite sizeon its mechanochemical reaction with La2O3 to formLaFeO3. Journal of Materials Science. 2001;36(9):2287–2290. DOI: https://doi.org/10.1023/a:10175208069222. Bayraktar D., Clemens F., Diethelm S., et al.Production and properties of substituted LaFeO3‑perovskitetubular membranes for partial oxidation ofmethane to syngas. Journal of the European CeramicSociety. 2007;27(6): 2455–2461. DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.10.0043. Reznichenko V. A., Averin V. V., Olyunina T. V.Titanaty. Nauchnye osnovy, tekhnologiya, proizvodstvo[Titanates. Scientific foundations, technology, production].Moscow: Nauka Publ.; 2010. 72 p. (In Russ.)4. Suzdalev I. P. Nanotekhnologiya: fiziko-khimiyananoklasterov, nanostruktur i nanomaterialov[Nanotechnology: physical chemistry of nanoclusters,nanostructures and nanomaterials]. Moscow:KomKniga Publ.; 2006. 592 p. (In Russ.)5. Gusev A. I. Nanomaterialy, nanostruktury,nanotekhnologii [Nanomaterials, nanostructures,nanotechnology]. Moscow: Fizmatlit Publ.; 2007. 416 p.6. International Center for Diffraction Data.7. X-ray diffraction date cards, ASTM","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73285476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Евгений Викторович Ковтунец, Алексей Карпович Субанаков, Баир Гармаевич Базаров
{"title":"Синтез, структура и люминесцентные свойства нового двойного бората K3Eu3B4O12","authors":"Евгений Викторович Ковтунец, Алексей Карпович Субанаков, Баир Гармаевич Базаров","doi":"10.17308/kcmf.2020.22/2823","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/2823","url":null,"abstract":"Установлено образование нового двойного бората K3Eu3B4O12. По данным уточнения кристаллической структуры методом Ритвельда соединение, кристаллизуется в моноклинной сингонии с параметрами элементарной ячейки a = 10.6727(7) Å, b = 8.9086(6) Å, c = 13.9684(9) Å, b = 110.388(2) ° (пр. гр. P2/c). Структура K3Eu3B4O12 представляет собой ажурные слои [Eu8(BO3)8]∞, расположенные почти параллельно плоскости ab, образованные пятиугольными бипирамидами EuO7, октаэдрами EuO6 и присоединенными к ним через общие вершины треугольниками BO3. Связьмежду соседними слоями осуществляется посредством пятиугольных бипирамид EuO7, треугольников BO3 и катионов калия. В спектре люминесценции наблюдается доминирование заметной полосы на длине волны 611 нм, обусловленной переходом 5D0→7F2 иона Eu3+. \u0000 \u0000 \u0000 \u0000ЛИТЕРАТУРА \u00001. Xie Z., Mutailipu M., He G., Han G., Wang Y., Yang Z., Zhang M., Pan S. A series of rare-earth boratesK7MRE2B15O30 (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. Chemistry of Materials. 2018;30 (7): 2414–2423. DOI: https://doi.org/10.1021/acs.chemmater.8b004912. Mutailipu M., Xie Z., Su X., Zhang M., Wang Y., Yang Z., Janjua M. R. S. A., Pan S. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. Journal of theAmerican Chemical Society. 2017;139(50): 18397–18405. DOI: https://doi.org/10.1021/jacs.7b112633. Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., DorzhievaS. G., Gavrilova T. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Pugachev A. M., Tushinova Yu. L.,Yelisseyev A. P. Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Advanced Powder Technology. 2017;28(5): 1309–1315. DOI:https://doi.org/10.1016/j.apt.2017.02.0194. Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., GavrilovaT. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Stefanovich S. Yu. Structural and spectroscopic propertiesof new noncentrosymmetric selfactivated borate Rb3EuB6O12 with B5O10 units. Materials & Design.2018;140: 488–494. DOI: https://doi.org/10.1016/j.matdes.2017.12.0045. Subanakov A. K., Kovtunets E. V., Bazarov B. G., Dorzhieva S. G., Bazarova J. G. New double holmiumborates: Rb3HoB6O12 and Rb3Ho2B3O9. Solid State Sciences. 2020;105: 106231. DOI: https://doi.org/10.1016/j.solidstatesciences.2020.1062316. Zhao J., Zhao D., Liu B.-Z., Xue Y.-L., Fan Y.-P., Zhang S.-R., Zong Q. K3Gd3B4O12: a new member ofrare-earth orthoborate for luminescent host matrix. Journal of Materials Science: Materials in Electronics.2018;29(24): 20808–20819. DOI: https://doi.org/10.1007/s10854-018-0223-67. Bruker AXS TOPAS V4: General profi le and structure analysis software for powder diffraction data. User’sManual. Bruker AXS, Karlsruhe, Germany, 2008. 68 p. 8. Järvinen M. Application of symmetrized harmonics expansion to correction of the","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84935093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Сергей Викторович Кузнецов, Алексей Сергеевич Низамутдинов, Эдуард Ильдарович Мадиров, Василий Андреевич Конюшкин, Андрей Николаевич Накладов, Валерий Вениаминович Воронов, Алексей Дмитриевич Япрынцев, Владимир Константинович Иванов, Вадим Владимирович Семашко, Павел Павлович Фёдоров
{"title":"Исследование люминесценции твердых растворов на основе фторида иттрия, легированных иттербием и европием для фотоники","authors":"Сергей Викторович Кузнецов, Алексей Сергеевич Низамутдинов, Эдуард Ильдарович Мадиров, Василий Андреевич Конюшкин, Андрей Николаевич Накладов, Валерий Вениаминович Воронов, Алексей Дмитриевич Япрынцев, Владимир Константинович Иванов, Вадим Владимирович Семашко, Павел Павлович Фёдоров","doi":"10.17308/kcmf.2020.22/2834","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/2834","url":null,"abstract":"Подавляющая часть мирового рынка солнечных фотоэлектрических устройств основывается на кремниевых технологиях. Актуальной задачей является повышение эффективности их работы за счет использования люминесцентных покрытий, в том числе преобразующих излучение из УФ-синей области спектра в ближний инфракрасный диапазон, где кремний поглощает излучение с наибольшей эффективностью (стоксовая, или даун-конверсионная люминесценция) или из инфракрасной области спектра в ближний инфракрасный диапазон (ап-конверсионная люминесценция). Целью данного исследования были синтез и исследование спектрально-кинетических характеристик однофазных твердых растворов Y1–x–yEuxYbyF3 и определение квантового выхода даун-конверсионной люминесценции.Методом высокотемпературного сплавления были синтезированы однофазные образцы твердых растворов Y1–x–yEuxYbyF3 ромбической сингонии. Для серий образцов с различным соотношением Eu3+/Yb3+ при двойном допировании этими ионами было подтверждено образование соответствующих твердых растворов с кристаллической решеткой фазы b-YF3. Химический состав установлен энергодисперсионным анализом и было определено, что он соответствует номинальному. Показано, что при возбуждении на длинах волн 266 и 296 нм наблюдается люминесценция как ионов Eu3+, так и ионов Yb3+, что свидетельствует об перспективе их использования в качествесенсибилизаторов УФ излучения. При этом при возбуждении на длине волны 266 нм регистрируется люминесценция ионов Eu2+. Максимальные квантовые выходы даун-конверсионной люминесценции иттербия в ближнем инфракрасном диапазоне длин волн со значением 2.2 % при возбуждении на длине волны 266 нм были зарегистрированы для YF3:Eu:Yb при соотношениях Eu3+:Yb3+ 0.1:10.0 и 0.05:5.00. \u0000 \u0000 \u0000 \u0000ЛИТЕРАТУРА \u00001. Weber E. R. Photovoltaics moving into the terawatt age. In: Proc. SPIE 10368, Next GenerationTechnologies for Solar Energy Conversion VIII. 2017;10368: 1036803. DOI: https://doi.org/10.1117/12.22779782. Seibt M., Kveder V. Gettering Processes and the Role of Extended Defects. In: Advanced Silicon Materialsfor Photovoltaic Applications. John Wiley & Sons, Ltd; 2012. pp. 127–188. DOI: https://doi.org/10.1002/9781118312193.ch43. Turkevych I., et al. Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics.Nature Nanotechnology. 2019:14(1): 57–63. DOI: https://doi.org/10.1038/s41565-018-0304-y4. Abdollahi Nejand B., et al. Vacuum-assisted growth of low-bandgap thin fi lms (FA 0.8 MA 0.2 Sn0.5 Pb 0.5 I 3) for all-perovskite tandem solar cells. Advanced Energy Materials. 2020;10(5): 1902583. DOI:https://doi.org/10.1002/aenm.2019025835. Im J. H., et al. 6.5% effi cient perovskite quantumdot- sensitized solar cell. Nanoscale. 2011;3(10):4088–4093. DOI: https://doi.org/10.1039/C1NR10867K6. Huang X., Sanyang H., Wei H., Xiaogang L. Enhancing solar cell efficiency: the search forluminescent materials as spectral converters. Chemical Society Reviews. 2013;42(1): 173–201. DOI: https://doi.org/10.1039/C2CS35288E7","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89289775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Larisa I. Belchinskaya, Konstantin V. Zhuzhukin, Konstantin A. Barkov, Sergey A. Ivkov, Vladimir A. Terekhov, E. P. Domashevskaya
{"title":"Влияние слабого импульсного электромагнитного поля на атомное строение природных алюмосиликатов клиноптилолита, монтмориллонита и палыгорскита","authors":"Larisa I. Belchinskaya, Konstantin V. Zhuzhukin, Konstantin A. Barkov, Sergey A. Ivkov, Vladimir A. Terekhov, E. P. Domashevskaya","doi":"10.17308/kcmf.2020.22/2525","DOIUrl":"https://doi.org/10.17308/kcmf.2020.22/2525","url":null,"abstract":"Естественные и искусственные алюмосиликаты являются актуальными объектами исследования благодаря широкому использованию в медицине, пищевой и химической промышленностях, в сельском хозяйстве. Целью работы является исследование возможных изменений под воздействием слабого импульсного электромагнитного поля атомного строения порошкообразных образцов трех минералов: клиноптилолита NaKNa2Ca2(SiSi29Al7)О72·24H2O монтмориллонита, монтмориллонита Ca0.2( AlMg)2Si4O10(OH))2·4H2O и палыгорскита AlSiMgAlSi4O10(OH)4·H2O относящихся к группе природных алюмосиликатов,, относящихся к группе природных алюмосиликатов, в которых кремний-кислородные и алюминий-кислородные тетраэдры связаны между собой общим атомом кислорода.Результаты исследований методами рентгеновской дифракции и ультрамягкой рентгеновской эмиссионной спектроскопии показали, что через 48 часов после воздействия слабого импульсного электромагнитного поля 71 мТл в течение 30 секунд атомная и электронная подсистемы образцов минералов все еще сохраняли изменения. Влияние слабого импульсного электромагнитного поля на атомную структуру минералов проявилось по-разному в трех образцах в виде одной-двух дополнительных слабых свехструктурных линий на дифрактограммах. Влияние слабого импульсного электромагнитного поля на локальное окружение кремния атомами кислорода в кремний-кислородных тетраэдрах проявилось в виде изменений тонкой структуры спектров ультрамягкой рентгеновской эмиссионной спектроскопии кремния SiLSiL2,3, указывающих на восстановление стехиометрии субоксидов кремния SiO1.8 в составе алюмосиликатов исходных порошков в стехиометрию, равную или близкую диоксиду кремния SiO2, во всех трех минералах. \u0000 \u0000 \u0000 \u0000 \u0000ЛИТЕРАТУРА \u0000 \u0000Гак Е. Рик Т. О влиянии постоянного магнитного поля на кинетику движения ионов в водных растворах сильных электролитов. Доклады АН СССР. 1967;175(4): 856–858. \u0000Мартынова О. Гусев Б. Леонтьев Е. К вопросу о механизме влияния магнитного поля на водные растворы солей. Успехи физических наук. 1969;98: 25–31. \u0000Чеснокова Л. Вопросы теории и практики магнитной обработки воды и водных систем. М.:.: Цветметинформация с.; 1971. 75 с. \u0000Kronenberg K. Experimental evidence for the effects of magnetic fields on moving water. IEEE Transactions on Magnetics. 1985;21(5); 2059–2061. DOI: http://doi.org.10.1109/tmag.1985.10640195 \u0000Котова Д. Артамонова М. Крысанова Т. А., Василенко М. С., Новикова Л. А., Бельчинская Л. И., Петухова Г. А. Влияние воздействия импульсного магнитного поля на гидратационные свойства клиноптилолита и глауконита. Физикохимия поверхности и защита материалов. 2018; 54 (4): 327–331. DOI: http://doi.org./10.7868/s0044185618040010 \u0000Вернадский В. Курбатов С. Земные силикаты, алюмосиликаты и их аналоги. 4изд. М.: 1937.378с.– 1937. 378 с. \u0000CPD S - International Center for Diffraction Data. PDF Card 2012 00-039-1383 \u0000CPD S - International Center for Diffraction Data. PDF Card 2012 00-013-0135 \u0000CPD S - International Center for Diffraction Data. PDF Card 2012 00-029-0855 \u0000Зи","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79794901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boris M. Darinskiy, Natalia D. Efanova, Andrey S. Prizhimov
{"title":"Строение специальных межкристаллитных границ в двухкомпонентных кристаллах","authors":"Boris M. Darinskiy, Natalia D. Efanova, Andrey S. Prizhimov","doi":"10.17308/kcmf.2019.21/2361","DOIUrl":"https://doi.org/10.17308/kcmf.2019.21/2361","url":null,"abstract":"В настоящей работе представлена новая методика построения решетки совпадающих узлов для кристаллов простой кубической, ОЦК, ГЦК структур, имеющих моноэлементные и полиэлементные составы. Разработан метод нахождения атомов различных элементов в межкристаллитных границах на основе специально построенной кристаллографической группы. Указаны возможные элементные составы специальных межкристаллитных границ, зарядовые состояния сопрягающихся плоскостей \u0000 \u0000 \u0000 \u0000 \u0000ЛИТЕРАТУРА1. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 363–381.DOI: https://doi.org/10.1080/147864367082297482. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 383–399.https://doi.org/10.1080/147864367082297493. Grimmer H. A method of determining the coincidence site lattices for cubic crystals // Acta Cryst. A,1974, v. 30(2), pp. 680–680. DOI: https://doi.org/10.1107/s056773947400163x4. Grimmer H., Bollmann W., Warrington D. T. Coincidence-site lattices and complete pattern-shiftin cubic crystals // Acta Cryst. A, 1974, v. 30(2), pp. 197–207. DOI : https://doi.org/10.1107/s056773947400043x5. Орлов А. Н., Перевезенцев В. Н., Рыбин В. В. Границы зерен в металлах. М.: Металлургия, 1980, 224 с.6. Глейтер Г., Чалмерс Б. Большеугловые границы зерен. М.: Мир, 1975, 376 с.7. Страумал Б. Б., Швиндлерман Л. С. Термическая стабильность и области существования специальных границ зерен // Поверхность. Физика, химия, механика, 1986, т. 10, с. 5–14.8. Fortes M. A. Coincidence site lattices in noncubic lattices // Phys. Stat. Sol. B, 1977, v. 82(1).pp. 377–382. DOI: https://doi.org/10.1002/pssb.22208201439. Bonnet R., Durand F. A general analytical method to fi nd a basis for the DSC lattice // ScriptaMet., 1975, v. 9(9), pp. 935–939. DOI: https://doi.org/10.1016/0036-9748(75)90548-710. Bonnet R. Note on a general analytical method to fi nd a basis for the DSC lattice. Derivation of a basisfor the CSL // Scripta Met., 1976, v. 10(9), pp. 801–806. DOI: https://doi.org/10.1016/0036-9748(76)90297-011. Bonnet R., Cousineau E. Computation of coincident and near-coincident cells for any two lattices– related DSC-1 and DSC-2 lattices // Acta Cryst. A, 1977, v. 33(5), pp. 850–856. DOI: https://doi.org/10.1107/s056773947700205812. Рыбин В. В., Перевезенцев В. Н. // ФТТ, 1975,т. 17, c. 3188–3193.13. Андреева А. В., Фионова Л. К. Анализ межкристаллитных границ на основе теории решетоксовпадающих узлов // ФММ, 1977, т. 44, с. 395–400.14. Кайбышев О. А., Валиев Р. З. Границы зерен и свойства металлов. М.: Металлургия, 1987, 214 c.15. Копецкий Ч. В., Орлов А. Н., Фионова Л. К. Границы зерен в чистых материалах. М.: Наука, 1987,160 c.16. Бокштейн Б. С. Структура и свойства внутренних поверхностей раздела в металлах. М.: Металлургия, 1988, 272 с.17. Kobayashi S., Tsurekawa S., Watanabe T. A new approach to grain boundary engineering for nanocrystallinematerials // Beilstein J. Nanotechnol., 2016, v. 7, pp. 1829–1849. DOI: h","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88046923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. L. Koshevoi, A. O. Belorus, Matyushkin В. Matyushkin, Ilya M. Pleshanov, P. Seredin, Sergey A. Ivkov, A. S. Lenshin
{"title":"ВНЕДРЕНИЕ СЕРЕБРА В МАТРИЦУ ПОРИСТОГО КРЕМНИЯ МЕТОДОМ ЭЛЕКТРО-ТЕРМОДИФФУЗИИ","authors":"V. L. Koshevoi, A. O. Belorus, Matyushkin В. Matyushkin, Ilya M. Pleshanov, P. Seredin, Sergey A. Ivkov, A. S. Lenshin","doi":"10.17308/kcmf.2019.21/1158","DOIUrl":"https://doi.org/10.17308/kcmf.2019.21/1158","url":null,"abstract":"В работе были проведены исследования возможности внедрения серебра в пористый кремний методом электро-термодиффузии и установлено влияние процедуры осаждения на адсорбционные свойства поверхности пористой матрицы. Композиты пористого кремния с внедренными частицами металла относятся к многофункциональным материалам и перспективны для применения в современной оптоэлектронике, сенсорике и персонализированной медицине. \u0000 \u0000ИСТОЧНИК ФИНАНСИРОВАНИЯИсследование выполнено при поддержке РФФИ в рамках научного проекта 19-32-50038мол_нр «Исследование морфологических, физико-химических и оптических свойств матриц наоснове por-Si в зависимости от методов их формирования и функционализации». \u0000 \u0000 \u0000REFERENCES \u0000 \u0000Raúl J. Martín-palma, Patrick D. McAtee, Rehab Ramadan, Akhlesh Lakhtakia. Hybrid nanostructured porous silicon-silver layers for wideband optical absorption. Scientifi c Reports, 2019, v. 9(1), p. 7291. https://doi.org/10.1038/s41598-019-43712-7 \u0000Kleps I., Miu M., Danila M., Simion M., Ignat T., Bragaru A., Dumitru L., Teodosiu G. Silver/porous silicon (PS) nanocomposite layers for biomedical applications. Proc. of “2006 International Semiconductor Conference”, 27-29 Sep., 2006, no. 9211112. https://doi.org/10.1109/SMICND.2006.283935 \u0000Ensafi A. A., Rezaloo F., Rezaei B. Electrochemical sensor based on porous silicon/silver nanocomposite for the determination of hydrogen peroxide. Sensors and Actuators B, 2016, v. 231, pp. 239–244. https://doi.org/10.1016/j.snb.2016.03.018 \u0000Jinjie Yin, Xiang Qi, Liwen Yang, Guolin Hao, Jun Li, Jianxin Zhong A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochimica Acta, 2011, v. 56(11), pp. 3884–3889. https://doi.org/10.1016/j.electacta. 2011.02.033 \u0000Spivak Yu. M., Bespalova K. A., Belorus A. O., Panevin A. A., Somov P. A., Grigor’eva N. Yu., Chistyakova L. V., Zhuravskiy S. G., Moshnikov V. A. Sposob polucheniya i primer lekarstvennoy funktsionalizatsii poverkhnosti nanochastits poristogo kremniya [A method of obtaining and an example of drug functionalization of the surface of porous silicon nanoparticles]. Biotekhnosfera [Biotechnosphere], 2017 (3), pp. 69–75. (in Russ.) \u0000Pastukhov A. I., Belorus A. O., Bukina Ya. V., Spivak Yu. M., Moshnikov V. A. Infl uence of technology conditions on the surface energy of porous silicon using the method of contact angle. Proc. of “2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)”, 1–3 Feb., 2017, pp. 1183-1185. https://doi.org/10.1109/eiconrus.2017.7910770 \u0000Matyushkin L. B. Tekhnologiya i oborudovanie dlya polucheniya kolloidnykh kvantovykh tochek CsPbX3 (X = Cl, Br, I), CdSe/ZnS, plazmonnykh nanochastits Ag/SiO2 i gibridnykh struktur na ikh osnove [Technology and equipment for obtaining CsPbX3 colloidal quantum dots (X = Cl, Br, I), CdSe/ZnS, Ag/SiO2 plasmonic nanoparticles and hybrid structures based on them. Cand. Sci. (Eng.) diss. St. Petersburg, 2018, 138 p","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79291318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Y. Mittova, B. V. Sladkopevtsev, V. Mittova, Anh Tien Nguyen, Evgenia I. Kopeychenko, Natalia V. Khoroshikh, Irina A. Varnachkina
{"title":"ФОРМИРОВАНИЕ ПЛЕНОК СИСТЕМЫ (Y2O3-Fe2O3) НАНОРАЗМЕРНОГО ДИАПАЗОНА ТОЛЩИНЫ НА МОНОКРИСТАЛЛИЧЕСКОМ InP","authors":"I. Y. Mittova, B. V. Sladkopevtsev, V. Mittova, Anh Tien Nguyen, Evgenia I. Kopeychenko, Natalia V. Khoroshikh, Irina A. Varnachkina","doi":"10.17308/kcmf.2019.21/1156","DOIUrl":"https://doi.org/10.17308/kcmf.2019.21/1156","url":null,"abstract":"Методом центрифугирования сформированы пленки наноразмерного диапазона толщины (лазерная, спектральная эллипсометрия) системы Y2O3–Fe2O3 на монокристаллическом InP из нитратного раствора. Состав пленок, выращенных без отжига - YFe2O4; отожженных термически при 200 °С – YFe2O4, Fe2O3 с примесью Fe3O4; прошедших импульсную фотонную обработку (50 Дж/см2, 0.4 с) и термооксидирование (450–550 °С, время 10–60 мин) – YFe2O4 и YFeO3. Отжиг с последующим термооксидированием способствует уменьшению размера зерен на поверхности выращенной пленки, но увеличивает среднюю шероховатость. Импульсная фотонная обработка обусловливает повышенную неровность поверхности гетероструктуры. \u0000 \u0000 \u0000ИСТОЧНИК ФИНАНСИРОВАНИЯРабота выполнена при поддержке грантаРФФИ №18-03-00354 а. \u0000 \u0000 \u0000 \u0000REFERENCES \u0000 \u0000Zvezdin A. K., Logginov A. S., Meshkov G. A., Pyatakov A. P. Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique. Bulletin of the Russian Academy of Sciences: Physics, 2007, v. 71(11), pp. 1561−1562. https://doi.org/10.3103/S1062873807110263 \u0000Fahlman B. Materials Chemistry. Springer Netherlands, 2011, 736 p. DOI: 10.1007/978-94-007-0693-4 \u0000Gubin S. P., Koksharov Yu. A., Khomutov G. B., Yurkov G. Yu. Magnetic nanoparticles: preparation, structure and properties. Russian Chemical Reviews, 2005, v. 74 (6), pp. 489–520. https://doi.org/10.1070/RC2005v074n06ABEH000897 \u0000Shabanova N. A., Popov V. V., Sarkisov P. D. Khimiya i tekhnologiya nanodispersnykh oksidov [Chemistry and technology of nanodispersed oxides]. M.: IKC Akademkniga Publ., 2007, 309 p. (in Russ.). \u0000Lima H. R. B. R., Nascimento D. S., Sussuchi E. M., Errico F. D., Souza S. O. Synthesis of MgB4O7 and Li2B4O7 crystals by proteic sol-gel and Pechini methods. Journal of Sol-gel Science and Technology, 2017, v. 81(3), pp. 797−805. https://doi.org/10.1007/s10971-016-4249-z \u0000Serrao C. R., Sahu J. R., Athinarayanan S., Rao C. N. R. Magnetoelectric effect in rare earth ferrites, LnFe2O4. Journal of Applied Physics, 2008, v. 104(1), p. 16102. https://doi.org/10.1063/1.2946455 \u0000Xu C., Yang Y., Wang S., Duan W., Gu B., Bellaiche L. Anomalous properties of hexagonal rare-earth ferrites from fi rst principles. Physical Review B, 2014, v. 89(20), p. 205122. https://doi.org/10.1103/Phys-RevB.89.205122 \u0000Mahalakshmi S., SrinivasaManja K., Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. Journal of Superconductivity and Novel Magnetism, 2014, v. 27(9), pp. 2083–2088. https://doi.org/10.1007/s10948-014-2551-y \u0000Sanchez-Andujar M., Mira J., Rivas J. Enhanced magnetoresistance in the ruddlesden−popper compound Sr3Fe1.5Co0.5O6.67. Journal of Magnetism and Magnetic Material, 2003, v. 263(3), pp. 282−288. https://doi.org/10.1016/S0304-8853(02)01576-7 \u0000Khomskii D. I. Multiferroics: Different ways to combine magnetism and ferroelectricity. Journal of Magnetism and Magnetic Material, 2006, v. 306(1), pp. 1−8. https://doi.org/10.1016/j.jmmm.2006.01.238 \u0000Patel R., Sim","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85346946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Panteleeva, Ilya S. Votinov, Igor S. Polkovnikov, Anatoliy В. Shein
{"title":"КИНЕТИКА КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА НА МОНОСИЛИЦИДЕ МАРГАНЦА В СЕРНОКИСЛОМ ЭЛЕКТРОЛИТЕ","authors":"V. Panteleeva, Ilya S. Votinov, Igor S. Polkovnikov, Anatoliy В. Shein","doi":"10.17308/kcmf.2019.21/1153","DOIUrl":"https://doi.org/10.17308/kcmf.2019.21/1153","url":null,"abstract":"Методами поляризационных и импедансных измерений изучена кинетика реакции выделения водорода на MnSi-электроде в сернокислых растворах с различной концентрацией ионов водорода. Сделано предположение о механизме выделения водорода на силициде. Отмечено влияние тонкой оксидной пленки на кинетику выделения водорода на MnSi при невысоких катодных поляризациях. \u0000 \u0000 \u0000 \u0000REFERENCES \u0000 \u0000Rotinyan A. L., Tikhonov K. I., Shoshina I. A. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Leningrad, Khimiya Publ., 1981, 424 p. (in Russ.) \u0000Antropov L. I. Teoreticheskaya elektrokhimiya [Theoretical Electrochemistry]. Мoscow, Vysshaya shkola Publ., 1984, 519 p. (in Russ.) \u0000Shamsul Huq A. K. M., Rosenberg A. J. J. Electrochemical behavior of nickel compounds. Electrochem. Soc. , 1964, v. 111(3), p. 270. https://doi.org/10.1149/1.2426107 \u0000Vijh A. K., Belanger G., Jacques R. Electrochemical reactions oh iron silicide surfaces in sulphuric acid. Materials Chemistry and Physics, 1988, v. 20(6), pp. 529–538. https://doi.org/10.1016/0254-0584(88)90086-7 \u0000Vijh A. K., Belanger G., Jacques R. Electrochemical activity of silicides of some transition metals for the hydrogen evolution reaction in acidic solutions. Int. J. Hydrogen Energy, 1990, v. 15(11), pp. 789–794. DOI: 10.1016/0360-3199(90)90014-P \u0000Shein A. B. Elektrokhimiya silitsidov i germanidov perekhodnykh metallov [Electrochemistry of silicides and germanides of transition metals]. Perm‘, Perm. gos. un-t Publ., 2009, 269 p. (in Russ.) \u0000Vigdorovich V. I., Tsygankova L. E., Gladysheva I. E., Kichigin V. I. Kinetics of hydrogen evolution from acidic solutions on pressed micro graphite electrodes modifi ed with carbon nanotubes. II. Impedance studies. Protection of Metals and Physical Chemistry of Surfaces, 2012, v. 48(4), pp. 438–443. https://doi.org/10.1134/S2070205112040181 \u0000Meyer S., Nikiforov A. V., Petrushina I. M., Kohler K., Christensen E., Jensen J. O., Bjerrum N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrogen Energy, 2015, v. 40(7), pp. 2905–2911. https://doi.org/10.1016/j.ijhydene.2014.12.076 \u0000Kichigin V. I., Shein A. B., Shamsutdinov A. Sh. The kinetics of cathodic hydrogen evolution on iron monosilicide in acid and alkaline solutions. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphases], 2016, v. 18(3), pp. 326–337. URL: https://journals.vsu.ru/kcmf/article/view/140/98 (in Russ.) \u0000Eftekhari A. Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, v. 42(16), pp. 11053–11077. https://doi.org/10.1016/j.ijhydene.2017.02.125 \u0000Schalenbach M., Speck F. D., Ledendecker M., Kasian O., Goehl D., Mingers A. M., Breitbach B., Springer H., Cherevko S., Mayrhofer K. J. J. Nickelmolybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. Electrochimica Acta, 2018, v. 259, pp. 1154–1161. htt","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85905682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}