Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases最新文献

筛选
英文 中文
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy 纳米硅基质中Dps蛋白的扫描电镜定位研究
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-12-06 DOI: 10.17308/kcmf.2021.23/3741
E. Parinova, S. Antipov, V. Sivakov, I. S. Kakuliia, S. Trebunskikh, E. Belikov, S. Turishchev
{"title":"Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy","authors":"E. Parinova, S. Antipov, V. Sivakov, I. S. Kakuliia, S. Trebunskikh, E. Belikov, S. Turishchev","doi":"10.17308/kcmf.2021.23/3741","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3741","url":null,"abstract":"The present work is related to the microscopic studies of the morphology of the planar and inner part of silicon nanowires arrays before and after immobilization with a natural nanomaterial, Dps protein of bacterial origin. Silicon nanowires were formed by metal-assisted wet chemical etching. To obtain the recombinant protein, Escherichia coli cells were used as excretion strain and purification were carried out using chromatography. The combination of silicon nanowires with protein molecules was carried out by layering at laboratory conditions followed by drying under air. The resulting hybrid material was studied by high-resolution scanning electron microscopy. Studies of the developed surface of the nanowires array were carried out before and after combining with the bioculture. The initial arrays of silicon wireshave a sharp boundaries in the planar part and in the depth of the array, transition layers are not observed. The diameter of the silicon nanowires is about 100 nm, the height is over a micrometer, while the distances between the nanowires are several hundred of nanometers. The pores formed in this way are available for filling with protein during the immobilization of protein.The effectiveness of using the scanning electron microscopy to study the surface morphology of the hybrid material “silicon wires – bacterial protein Dps” has been demonstrated. It is shown that the pores with an extremely developed surface can be combined with a bio-material by deposition deep into cavities. The protein molecules can easily penetrate through whole porous wires matrix array. The obtained results demonstrate the possibility of efficient immobilization of nanoscaled Dps protein molecules into an accessible and controllably developed surface of silicon nanowires.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89798186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New nanocomposites for deep water deoxygenation 新型深水脱氧纳米复合材料
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3682
T. Fertikova, S. V. Fertikov, Ekaterina M. Isaeva, V. A. Krysanov, T. A. Kravchenko
{"title":"New nanocomposites for deep water deoxygenation","authors":"T. Fertikova, S. V. Fertikov, Ekaterina M. Isaeva, V. A. Krysanov, T. A. Kravchenko","doi":"10.17308/kcmf.2021.23/3682","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3682","url":null,"abstract":"New metal-polymer nanocomposites for deep water deoxygenation have been obtained and studied. A macro- and monoporous sulphocation exchanger with a nanometer pore size was used as the polymer matrix, and the metal was nanodispersed copper deposited in the pores of the matrix. A specific feature of the studied nanocomposites is their sodium ionic form, which eliminates the possibility of the formation of soluble copper oxidation products. The established linear dependence of the copper capacity on the number of cycles of ion-exchange saturation - chemical deposition shows that the process of metal deposition into the pores of the matrix does not have significant obstacles during 10 cycles and contributes to the production of high-capacity samples.The high efficiency and duration of the life cycle of high-capacity copper ion exchanger nanocomposites have been shown. Experimental studies of water deoxygenation in column-type apparatus with a nanocomposite nozzle were confirmed by a theoretical analysis of the process dynamics. Experimental data and theoretical calculations showed the deep level of water deoxygenation had practically unchanged values of pH and electrical conductivity. Residual oxygen can be controlled and does not exceed 3 μg/l (ppb).The hygienic and economic substantiation of the expediency of using the obtained nanocomposites is provided. The necessity of using modern nanocomposite metal-polymer materials for deep water deoxygenation circulating in technological systems was analysed. When using this innovation, the metal components of the distribution facilities will be protected from corrosion and, therefore, the hygienic requirements for the water quality of centralised drinking water supply systems will be ensured. Deep chemical water deoxygenation using copper ion-exchange polymer nanocomposites in sodium formallows solving the problem of the corrosion resistance of metals, ensuring that water meets hygienic requirements on a large scale.The competitive advantage of the considered water deoxygenation system in comparison with the known systems is the rejection of the use of precious metals-catalysts (palladium, platinum), pure hydrogen, and complex design solutions. The proposed new nanocomposite installation for water deoxygenation is characterised by its ease of use and can be built into a filter system for water purification.SWOT analysis of the advantages and disadvantages of the proposed method of water deoxygenation showed that its main advantages are the high oxygen capacity of the nanocomposite, low residual oxygen content (3 ppb (μg/l)) in the water, and ease of operation of the deoxygenator. Calculations of the economic efficiency of the nanocomposite have been carried out. The breakeven point is reached when producing only ~100 l of nanocomposite and a volume of sales ~1,600,000 roubles, above which a profit can be obtained. The payback period for an investment of ~15,000,000 roubles is rather short and will not exce","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"149 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77584262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cylindrical model of electrochromic colouration of hydrated vanadium pentoxide thin films with point contacts 点接触水合五氧化二钒薄膜电致变色的圆柱形模型
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3666
P. Boriskov, S. V. Burdyukh, O. Berezina
{"title":"Cylindrical model of electrochromic colouration of hydrated vanadium pentoxide thin films with point contacts","authors":"P. Boriskov, S. V. Burdyukh, O. Berezina","doi":"10.17308/kcmf.2021.23/3666","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3666","url":null,"abstract":"This article analyses experiments on the kinetics of the internal electrochromism of thin (micron) films of hydrated vanadium pentoxide xerogel with point contacts. It describes a cylindrical model of electrochromic colouration, which was used to evaluate the concentration of the colour centres in the initial film and after additional hydrogenation of this film by plasmaimmersion ion implantation.When we compared the calculated values of the concentration of colour centres with the equilibrium concentration of protons in the xerogel, we saw that the mobility of the protons migrating from the depth of the film to the cathode region, which are involved in the electrochemical reaction, was not a determinant of the electrochromism kinetics.The rate of electrochromic colouration could be increased by the formation of layered film structures based on hydrated vanadium pentoxide, which have increased overall electron conductivity and, as a consequence, low faradaic resistance of the electrochromic cathodic reaction.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"73 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86252894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pd–Pb nanoscale films as surface modifiers of Pd,Cu alloy membranes used for hydrogen ultrapurification 钯-铅纳米膜作为氢超净化用钯、铜合金膜的表面改性剂
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3675
Alexander A. Skrynnikov, A. Fedoseeva, N. Morozova, Alexey I. Dontsov, Aleksander V. Vvedenskii, O. Kozaderov
{"title":"Pd–Pb nanoscale films as surface modifiers of Pd,Cu alloy membranes used for hydrogen ultrapurification","authors":"Alexander A. Skrynnikov, A. Fedoseeva, N. Morozova, Alexey I. Dontsov, Aleksander V. Vvedenskii, O. Kozaderov","doi":"10.17308/kcmf.2021.23/3675","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3675","url":null,"abstract":"The purpose of the article is to reveal the role of the thickness of the layer of the lead-palladium alloy deposited on a copper-palladium membrane in the processes of cathodic injection and the anodic extraction of atomic hydrogen.The objects of the study were ~ 4 μm thick copper-palladium film electrodes obtained by magnetron sputtering of a target with a composition of 56 at. % Cu and 44 at. % Pd. The studies were carried out by cyclic voltammetry and double step anodic-cathodic chronoamperometry in a deaerated 0.1 М H2SO4 aqueous solution. The calculation of the parameters of hydrogen permeability for samples of finite thickness was carried out by mathematical modelling.Cathodic injection and anodic extraction of atomic hydrogen were used to study the effect of the surface modification of the foil membrane of a Pd-Cu solid solution on the diffusion and kinetic parameters of hydrogen permeability. It was found that even a small addition of Pd-Pb (a 2 nm thick film) leads to a decrease in the concentration of atomic hydrogen and the diffusion coefficient in the foil. With an increase in the thickness of the coating there is an increase in the diffusion parameters of the hydrogen injection and extraction processes. However, the hydrogen permeability does not reach the level of the unmodified alloy. The main kinetic parameter, the hydrogen extraction rate constant, changes nonlinearly with an increase in the thickness of the coating.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89831218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hydrothermal assisted conventional sol-gel method for synthesis of bioactive glass 70S30Cы 水热辅助常规溶胶-凝胶法合成生物活性玻璃70s30cmo
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3678
T. A. Tuan, E. Guseva, N. A. Tien, H. T. Anh, B. X. Vuong, L. Phuc, N. Q. Hien, B. T. Hoa, Nguyen Viet Long
{"title":"Hydrothermal assisted conventional sol-gel method for synthesis of bioactive glass 70S30Cы","authors":"T. A. Tuan, E. Guseva, N. A. Tien, H. T. Anh, B. X. Vuong, L. Phuc, N. Q. Hien, B. T. Hoa, Nguyen Viet Long","doi":"10.17308/kcmf.2021.23/3678","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3678","url":null,"abstract":"Bioactive glasses (Bioglasses) are widely synthesized by the conventional sol-gel method consisting of two main steps for sol and gel formation. However, the conversion from sol to gel requires a long time (5–7 days). In this study, the hydrothermal system was used to quickly synthesize the bioactive glass by reducing the conversion time from sol to gel. The hydrothermal assisted conventional sol-gel method was applied for synthesis of the bioactive glass 70SiO2–30CaO (mol%) (noted as 70S30C). The synthetic glass was investigated by the physical-chemical techniques. The ‘‘in vitro’’ experiments in SBF (Simulated Body Fluid) solution was also performed to evaluate the bioactivity of synthetic material. The obtained results show that the bioactive glass 70S30C was successfully elaborated by using the hydrothermal assisted conventional sol-gelmethod. The consuming time was reduced compared to the conventional method. The physical-chemical characterization confirmed that the synthetic glass is amorphous material with mesoporous structure consisting of interconnected particles.The specific surface area, pore volume and average pore diameter of synthetic glass were 142.8 m2/g, 0.52 cm3/g, and 19.1 nm, respectively. Furthermore, synthetic bioactive glass exhibited interesting bioactivity when immersed in simulated body fluid (SBF) solution for 1 days and good biocompatibility when cultured in cellular media.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84683538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Synthesis and properties of nanosized ZnO/wood composite 纳米ZnO/木材复合材料的合成与性能研究
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3677
E. Tomina, A. Pavlenko, A. Dmitrenkov, S. Neminushchaya
{"title":"Synthesis and properties of nanosized ZnO/wood composite","authors":"E. Tomina, A. Pavlenko, A. Dmitrenkov, S. Neminushchaya","doi":"10.17308/kcmf.2021.23/3677","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3677","url":null,"abstract":"The aim of the study was to synthesise a ZnO/silver birch wood (Bétula péndula) nanocomposite and evaluate its physical and mechanical properties in comparison with an unmodified natural polymer.Using the sol-gel method, we synthesised almost spherical impurity-free zinc oxide nanoparticles with a predominant particle size of about 20 nm. Amorphous hydrated Zn(OH)2 was impregnated into the wood material at the gel formation stage. It resulted in the reaction of zinc hydroxide decomposition with the formation of ZnO nanoparticles in the wood as a nanoreactor.The hydrophobic properties of the surface of ZnO/silver birch wood nanocomposite improved significantly (the contact angle of wetting doubled). Its moisture and water resistance decreased (2-5 times and 30%, respectively). The nanocomposite also showed less swelling in the radial (8-10 times) and tangential (2.6-10 times) directions in comparison with natural wood.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88441759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Complexation processes in “PbCl2-N2H4CS” aqueous solutions during deposition of lead sulphide films “PbCl2-N2H4CS”水溶液中硫化铅薄膜沉积过程中的络合过程
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3673
Victor N. Semenov, V. V. Volkov, N. V. Pereslytskikh
{"title":"Complexation processes in “PbCl2-N2H4CS” aqueous solutions during deposition of lead sulphide films","authors":"Victor N. Semenov, V. V. Volkov, N. V. Pereslytskikh","doi":"10.17308/kcmf.2021.23/3673","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3673","url":null,"abstract":"In this study, we proposed a new approach to assessing the processes of complexation in aqueous solutions using the example of the interaction of lead chloride with thiourea. The goal of this study was the investigation of processes of complexation in “PbCl2-N2H4CS” aqueous solutions and determination of the regions of dominance of thiourea coordination compounds, which are precursors during the deposition of lead sulphide films.Based on the diagrams and cross section lines of equal fractions constructed in three-dimensional space, the regions of dominance of all complex forms existing in the studied solution were found. Such a graphic image is the most informative, since it allows selection of the concentration ranges of the predominance of certain coordination compounds, especially thiourea complexes, which are precursors during the deposition of lead sulphide films. It was shown that an increase in the concentration of N2H4CS led to an increase in the total fraction of thiourea complexes: for a twofold excess of N2H4CS its fraction was 0.25, for a threefold excess it was 0.35, for a fourfold excess it was 0.5, for a fivefold excess it was 0.7.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77555918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semiconductor metal oxide sensor for hydrogen sulphide operating under non-stationary temperature conditions 用于在非固定温度条件下工作的硫化氢的半导体金属氧化物传感器
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3684
A. Shaposhnik, A. A. Zviagin, O. V. Dyakonova, S. Ryabtsev, D. Ghareeb
{"title":"Semiconductor metal oxide sensor for hydrogen sulphide operating under non-stationary temperature conditions","authors":"A. Shaposhnik, A. A. Zviagin, O. V. Dyakonova, S. Ryabtsev, D. Ghareeb","doi":"10.17308/kcmf.2021.23/3684","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3684","url":null,"abstract":"The aim of the work was to create a selective gas sensor for hydrogen sulphide. As a result of adding ammonia to the zinc acetate solution, centrifuging the obtained zinc hydroxide and subsequent calcination, a polydisperse zinc oxide powder with a grain size of 5–50 nm was obtained. The material was characterized using X-ray phase analysis and transmission electron microscopy. Subsequently, silver nitrate and terpeniol were added to the zinc oxide nanopowder to form a paste. The gas-sensitive material was obtained by applying the resulting paste on a special dielectric substrate and subsequent calcination, as a result of which the terpeniol burned out, and the silver nitrate turned into an oxide (the mass fraction of the silver was 3%). A non-stationary temperature mode for the operation of the sensor was selected, in which, after rapidheating of the sensor to 450 °C (2 seconds), slow (13 seconds) cooling to 100 °C occurred. Each subsequent heating-cooling cycle with a total period of 15 seconds began immediately after the end of the previous cycle. The use of an unsteady temperature mode in combination with the selection of the composition of the gas-sensitive layer made it possible to obtain a response of 200 for a hydrogen sulphide concentration of 1 ppm. Along with an increase in sensitivity, a significant increase in selectivity was also observed. The cross-sensitivity for the determination of hydrogen sulphide and other reducing gases (CO, NH3, H2) was more than three orders of magnitude. Thus, this sensor can be used to detect hydrogen sulphide even in the presence of interfering components. The use of highly selective sensors in the tasks of qualitative andquantitative analysis can significantly simplify the calibration in comparison with “electronic nose” devices. Devices based on highly selective sensors do not require the use of mathematical methods for processing multidimensional data arrays.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"59 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90937839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Entropy features of the PeTa effect during phase transformations of water 水相变中PeTa效应的熵特征
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3665
G. S. Bordonskiy
{"title":"Entropy features of the PeTa effect during phase transformations of water","authors":"G. S. Bordonskiy","doi":"10.17308/kcmf.2021.23/3665","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3665","url":null,"abstract":"The article discusses a hypothesis put forward by V. A. Tatarchenko and M. E. Perelman. According to it, the first order phase transition during vapour condensation or melt crystallisation (PeTa effect) is accompanied by the appearance of nonthermal radiation of the media. The generally accepted point of view is that the latent heat of phase transformation can only be released in the form of heat. When the authors of the hypothesis tried to prove the existence of the effect of nonthermal radiation and considered the facts confirming it, they did not take into account the peculiarities of the initial and final states of the medium (i.e. their entropy). To clarify the physics of the process of liquid crystallisation and to consider the possibility of nonthermal radiation, we studied the peculiarities of water crystallisation and the formation of ice. This isthe process the authors referred to in order to prove their hypothesis. It was shown that in various experiments, it is necessary to consider both the state (structure) of the initial water samples and the formed ice, which can consist of various crystalline modifications with chaotic packing. These features of initial and final states, i.e. the entropy of water and ice samples in real experiments and under observed natural phenomena, make it more difficult to assess the characteristics of a possible radiation. The entropy of the initial and final states was determined by the procedure of the system preparation and the peculiarities of the phase transition dynamics. Its values depend on macroscopic parameters, as well a s on themicrostructure of the media, the determination of which is a very challenging task in each specific case. In addition, in many cases, we have to deal with metastable media, for which it is necessary to take into account the influence of fluctuations on the process of the phase transition. Therefore, the concepts of equilibrium thermodynamics are not applicable to them. However, these are the media where non-heat radiations may occur in accordance with the laws of self-organisation in nonlinear weakly nonequilibrium objects. This work shows a method for preparing low-entropy medium with its subsequent phase transformation into ice. To do so we conducted an experiment which involved freezing concentrated alcohol in order to obtain deeply supercooled water. It appears that to find the characteristics of the PeTa radiation it is necessary to takeinto account the entropy constraints for each specific case, which will allow assessing the spectrum of possible non-heated radiations and their characteristics.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82773951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes 用膨润土改性双极膜对硫酸钠溶液进行电渗析
Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases Pub Date : 2021-11-24 DOI: 10.17308/kcmf.2021.23/3670
O. Kozaderova, Ks Kim, P. Belousov, A. V. Timkova, S. Niftaliev
{"title":"Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes","authors":"O. Kozaderova, Ks Kim, P. Belousov, A. V. Timkova, S. Niftaliev","doi":"10.17308/kcmf.2021.23/3670","DOIUrl":"https://doi.org/10.17308/kcmf.2021.23/3670","url":null,"abstract":"The aim of this work is to study the characteristics of the electrodialysis of a sodium sulphate solution with experimental bipolar membranes based on the MA-41 anion exchange membrane and a liquid sulphonated cation-exchanger modified with bentonite clays. The conversion of sodium sulphate was conducted by electrodialysis with bipolar membranes obtained by applying a liquid sulphonated cation-exchanger containing particles of bentonite clay to the MA-41 anion-exchange membrane.To increase the performance of membranes in terms of hydrogen and hydroxyl ions, we carried out organomodifications of bentonite with alkyldimethylbenzylammonium chloride and stearic acid at various concentrations. The bipolar membrane with the addition of bentonite modified with alkyldimethylbenzylammonium chloride (2 wt%) showed a higher performance in terms of H+-ions. The bipolar membrane with bentonite modified with stearic acid (3 wt%) added to its cation-exchangelayer is the most effective in terms of obtaining a flux of OH--ions. It was shown that a combination ofalkyldimethylbenzylammonium chloride (2 wt%) and stearic acid (3 wt%) used to modify bentonite can increase the performance of the bipolar membrane during the conversion of sodium sulphate, both in terms of the acid and alkali.","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"337 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75486459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信