Boris M. Darinskiy, Natalia D. Efanova, Andrey S. Prizhimov
{"title":"Строение специальных межкристаллитных границ в двухкомпонентных кристаллах","authors":"Boris M. Darinskiy, Natalia D. Efanova, Andrey S. Prizhimov","doi":"10.17308/kcmf.2019.21/2361","DOIUrl":null,"url":null,"abstract":"В настоящей работе представлена новая методика построения решетки совпадающих узлов для кристаллов простой кубической, ОЦК, ГЦК структур, имеющих моноэлементные и полиэлементные составы. Разработан метод нахождения атомов различных элементов в межкристаллитных границах на основе специально построенной кристаллографической группы. Указаны возможные элементные составы специальных межкристаллитных границ, зарядовые состояния сопрягающихся плоскостей \n \n \n \n \nЛИТЕРАТУРА1. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 363–381.DOI: https://doi.org/10.1080/147864367082297482. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 383–399.https://doi.org/10.1080/147864367082297493. Grimmer H. A method of determining the coincidence site lattices for cubic crystals // Acta Cryst. A,1974, v. 30(2), pp. 680–680. DOI: https://doi.org/10.1107/s056773947400163x4. Grimmer H., Bollmann W., Warrington D. T. Coincidence-site lattices and complete pattern-shiftin cubic crystals // Acta Cryst. A, 1974, v. 30(2), pp. 197–207. DOI : https://doi.org/10.1107/s056773947400043x5. Орлов А. Н., Перевезенцев В. Н., Рыбин В. В. Границы зерен в металлах. М.: Металлургия, 1980, 224 с.6. Глейтер Г., Чалмерс Б. Большеугловые границы зерен. М.: Мир, 1975, 376 с.7. Страумал Б. Б., Швиндлерман Л. С. Термическая стабильность и области существования специальных границ зерен // Поверхность. Физика, химия, механика, 1986, т. 10, с. 5–14.8. Fortes M. A. Coincidence site lattices in noncubic lattices // Phys. Stat. Sol. B, 1977, v. 82(1).pp. 377–382. DOI: https://doi.org/10.1002/pssb.22208201439. Bonnet R., Durand F. A general analytical method to fi nd a basis for the DSC lattice // ScriptaMet., 1975, v. 9(9), pp. 935–939. DOI: https://doi.org/10.1016/0036-9748(75)90548-710. Bonnet R. Note on a general analytical method to fi nd a basis for the DSC lattice. Derivation of a basisfor the CSL // Scripta Met., 1976, v. 10(9), pp. 801–806. DOI: https://doi.org/10.1016/0036-9748(76)90297-011. Bonnet R., Cousineau E. Computation of coincident and near-coincident cells for any two lattices– related DSC-1 and DSC-2 lattices // Acta Cryst. A, 1977, v. 33(5), pp. 850–856. DOI: https://doi.org/10.1107/s056773947700205812. Рыбин В. В., Перевезенцев В. Н. // ФТТ, 1975,т. 17, c. 3188–3193.13. Андреева А. В., Фионова Л. К. Анализ межкристаллитных границ на основе теории решетоксовпадающих узлов // ФММ, 1977, т. 44, с. 395–400.14. Кайбышев О. А., Валиев Р. З. Границы зерен и свойства металлов. М.: Металлургия, 1987, 214 c.15. Копецкий Ч. В., Орлов А. Н., Фионова Л. К. Границы зерен в чистых материалах. М.: Наука, 1987,160 c.16. Бокштейн Б. С. Структура и свойства внутренних поверхностей раздела в металлах. М.: Металлургия, 1988, 272 с.17. Kobayashi S., Tsurekawa S., Watanabe T. A new approach to grain boundary engineering for nanocrystallinematerials // Beilstein J. Nanotechnol., 2016, v. 7, pp. 1829–1849. DOI: https://doi.org/10.3762/bjnano.7.17618. Сухомлин Г. Д. Специальные границы в феррите низкоуглеродистых сталей // Металлофизика, новейшие технологии, 2013, т. 35, с. 1237–1249.19. Watanabe T. Grain boundary engineering: historical perspective and future prospects // Journalof Materials Science, 2011, v. 46, pp. 4095–4115. DOI: https://doi.org/10.1007/s10853-011-5393-z20. Waser R. Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics // Solid State Ionics,1995, v. 75, pp. 89–99. DOI: https://doi.org/10.1016/0167-2738(94)00152-i21. Daniels J., Wemicke R. New Aspects of an Improved PTC Model // Philips Res. Rep., 1976, v. 31,pp. 544–559.22. Vikrant K. S. N., Edwin G. R. Charged grain boundary transitions in ionic ceramics for energy applications// Computational Materials, 2019, v. 5(1), pp. 24. DOI: https://doi.org/10.1038/s41524-019-0159-223. Kim M., Duscher G., Browning N.D., Sohlberg K., Pantelides S. T., Pennycook S. J. Nonstoichiometryand the electrical activity of grain boundaries in SrTiO3 // Physical Review Letters, 2001, v. 86,pp. 4056–4059. DOI: https://doi.org/10.1103/physrevlett.86.405624. Oyama T., Wada N., Takagi H. Trapping of oxygen vacancy at grain boundary and its correlationwith local atomic confi guration and resultant excess energy in barium titanate: A systematic computationalanalysis // Physical Review B, 2010, v. 82, pp. 134107. DOI: https://doi.org/10.1103/physrevb.82.13410725. Duffy D.M., Tasker P.W. Space-charge regions around dipolar grain boundaries // Journal of AppliedPhysics, 1984, v. 56, pp. 971–977. DOI: https://doi.org/10.1063/1.33403726. Даринский Б. М., Ефанова Н. Д., Прижимов А. С. Систематика решеток совпадающих узловдля ОЦК и ГЦК кристаллов // Конденсированные среды и межфазные границы, 2018, т. 20(4), с. 581–586. DOI: https://doi.org/10.17308/kcmf.2018.20/632","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/2361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
В настоящей работе представлена новая методика построения решетки совпадающих узлов для кристаллов простой кубической, ОЦК, ГЦК структур, имеющих моноэлементные и полиэлементные составы. Разработан метод нахождения атомов различных элементов в межкристаллитных границах на основе специально построенной кристаллографической группы. Указаны возможные элементные составы специальных межкристаллитных границ, зарядовые состояния сопрягающихся плоскостей
ЛИТЕРАТУРА1. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 363–381.DOI: https://doi.org/10.1080/147864367082297482. Bollmann W. On the geometry of grain and phase boundaries // Phil. Mag., 1967, v. 16(140), pp. 383–399.https://doi.org/10.1080/147864367082297493. Grimmer H. A method of determining the coincidence site lattices for cubic crystals // Acta Cryst. A,1974, v. 30(2), pp. 680–680. DOI: https://doi.org/10.1107/s056773947400163x4. Grimmer H., Bollmann W., Warrington D. T. Coincidence-site lattices and complete pattern-shiftin cubic crystals // Acta Cryst. A, 1974, v. 30(2), pp. 197–207. DOI : https://doi.org/10.1107/s056773947400043x5. Орлов А. Н., Перевезенцев В. Н., Рыбин В. В. Границы зерен в металлах. М.: Металлургия, 1980, 224 с.6. Глейтер Г., Чалмерс Б. Большеугловые границы зерен. М.: Мир, 1975, 376 с.7. Страумал Б. Б., Швиндлерман Л. С. Термическая стабильность и области существования специальных границ зерен // Поверхность. Физика, химия, механика, 1986, т. 10, с. 5–14.8. Fortes M. A. Coincidence site lattices in noncubic lattices // Phys. Stat. Sol. B, 1977, v. 82(1).pp. 377–382. DOI: https://doi.org/10.1002/pssb.22208201439. Bonnet R., Durand F. A general analytical method to fi nd a basis for the DSC lattice // ScriptaMet., 1975, v. 9(9), pp. 935–939. DOI: https://doi.org/10.1016/0036-9748(75)90548-710. Bonnet R. Note on a general analytical method to fi nd a basis for the DSC lattice. Derivation of a basisfor the CSL // Scripta Met., 1976, v. 10(9), pp. 801–806. DOI: https://doi.org/10.1016/0036-9748(76)90297-011. Bonnet R., Cousineau E. Computation of coincident and near-coincident cells for any two lattices– related DSC-1 and DSC-2 lattices // Acta Cryst. A, 1977, v. 33(5), pp. 850–856. DOI: https://doi.org/10.1107/s056773947700205812. Рыбин В. В., Перевезенцев В. Н. // ФТТ, 1975,т. 17, c. 3188–3193.13. Андреева А. В., Фионова Л. К. Анализ межкристаллитных границ на основе теории решетоксовпадающих узлов // ФММ, 1977, т. 44, с. 395–400.14. Кайбышев О. А., Валиев Р. З. Границы зерен и свойства металлов. М.: Металлургия, 1987, 214 c.15. Копецкий Ч. В., Орлов А. Н., Фионова Л. К. Границы зерен в чистых материалах. М.: Наука, 1987,160 c.16. Бокштейн Б. С. Структура и свойства внутренних поверхностей раздела в металлах. М.: Металлургия, 1988, 272 с.17. Kobayashi S., Tsurekawa S., Watanabe T. A new approach to grain boundary engineering for nanocrystallinematerials // Beilstein J. Nanotechnol., 2016, v. 7, pp. 1829–1849. DOI: https://doi.org/10.3762/bjnano.7.17618. Сухомлин Г. Д. Специальные границы в феррите низкоуглеродистых сталей // Металлофизика, новейшие технологии, 2013, т. 35, с. 1237–1249.19. Watanabe T. Grain boundary engineering: historical perspective and future prospects // Journalof Materials Science, 2011, v. 46, pp. 4095–4115. DOI: https://doi.org/10.1007/s10853-011-5393-z20. Waser R. Electronic properties of grain boundaries in SrTiO3 and BaTiO3 ceramics // Solid State Ionics,1995, v. 75, pp. 89–99. DOI: https://doi.org/10.1016/0167-2738(94)00152-i21. Daniels J., Wemicke R. New Aspects of an Improved PTC Model // Philips Res. Rep., 1976, v. 31,pp. 544–559.22. Vikrant K. S. N., Edwin G. R. Charged grain boundary transitions in ionic ceramics for energy applications// Computational Materials, 2019, v. 5(1), pp. 24. DOI: https://doi.org/10.1038/s41524-019-0159-223. Kim M., Duscher G., Browning N.D., Sohlberg K., Pantelides S. T., Pennycook S. J. Nonstoichiometryand the electrical activity of grain boundaries in SrTiO3 // Physical Review Letters, 2001, v. 86,pp. 4056–4059. DOI: https://doi.org/10.1103/physrevlett.86.405624. Oyama T., Wada N., Takagi H. Trapping of oxygen vacancy at grain boundary and its correlationwith local atomic confi guration and resultant excess energy in barium titanate: A systematic computationalanalysis // Physical Review B, 2010, v. 82, pp. 134107. DOI: https://doi.org/10.1103/physrevb.82.13410725. Duffy D.M., Tasker P.W. Space-charge regions around dipolar grain boundaries // Journal of AppliedPhysics, 1984, v. 56, pp. 971–977. DOI: https://doi.org/10.1063/1.33403726. Даринский Б. М., Ефанова Н. Д., Прижимов А. С. Систематика решеток совпадающих узловдля ОЦК и ГЦК кристаллов // Конденсированные среды и межфазные границы, 2018, т. 20(4), с. 581–586. DOI: https://doi.org/10.17308/kcmf.2018.20/632