Uul Warosatul Ambiya, N. Nurlina, Gusrizal Gusrizal
{"title":"Synthesis of Magnetic Chitosan Composite Beads as an Adsorbent for Removal of Organic Matter from Peat Water","authors":"Uul Warosatul Ambiya, N. Nurlina, Gusrizal Gusrizal","doi":"10.14710/jksa.25.9.338-345","DOIUrl":"https://doi.org/10.14710/jksa.25.9.338-345","url":null,"abstract":"Groundwater in peatlands has the potential to be utilized as a water source, but its high organic matter content presents challenges. This study aimed to improve the quality of peat water through the adsorption of organic matter using chitosan magnetic beads composite adsorbent. Magnetic chitosan beads (KMB) composite was synthesized by mixing chitosan, acetic acid, and a mixture of Fe2+/Fe3+ solution with a mole ratio of 1:2. This mixture was then dropped into a sodium hydroxide solution. In addition to KMB, magnetic composite beads containing glutaraldehyde crosslinking agent (KMBG) were also synthesized. The results of composites analysis using a Fourier transform infrared (FTIR) spectrophotometer showed typical Fe-O absorption bands at 582 cm-1 and 578 cm-1 for KMB and KMBG. The typical C=N absorption band for glutaraldehyde in KMBG appeared at 1631 cm-1. X-ray diffraction (XRD) analysis revealed the characteristic peaks of Fe3O4 for KMB and KMBG at 2θ = 30.2°, 35.5°, 43.2°, 57.0°, and 62.8° with an amorphous structure. The adsorption of organic matter was performed by varying the pH (2, 3, 4, and 5) of peat water and the mass of the adsorbent (50, 70, 100, 200, and 300 mg). The optimum adsorption occurred at pH 2 with an absorbent mass of 0.1 g KMB and 0.07 g KMBG. Applying KMB on peat water reduces turbidity, color, and absorbance at a wavelength of 254 nm (Aλ=254), which is better than using KMBG. These three parameters’ efficiency percentages were 44%, 78%, and 74% for KMB and 17%, 30%, and 59% for KMBG.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48898850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shihandhanu Primadian Taqwa, M. C. Djunaidi, R. A. Lusiana
{"title":"Synthesis of Chitosan Derivative Compounds Through Chloroacetic Acid and Heparin Grafting and Their Application as Membrane Materials with Polyvinyl Alcohol (PVA)","authors":"Shihandhanu Primadian Taqwa, M. C. Djunaidi, R. A. Lusiana","doi":"10.14710/jksa.25.11.412-418","DOIUrl":"https://doi.org/10.14710/jksa.25.11.412-418","url":null,"abstract":"A chitosan membrane modified with chloroacetic acid with heparin (hep) and polyvinyl alcohol (PVA) has been successfully prepared. Chitosan was modified with chloroacetic acid through a nucleophilic substitution reaction to form N-carboxyl methyl chitosan (N-CMC) and then combined with PVA. N-CMC/PVA grafting with heparin was conducted using the immersion method and produced N-CMC/PVA.g.Hep membrane. This study aims to obtain a membrane with the best chemical and physical characteristics and the highest creatinine transport. Membrane characterization includes water absorption test, tensile strength, thickness, biodegradation, resistance to pH, and transport of creatinine and vitamin B12. Chemical characterization of active groups and morphology using FTIR and SEM. The characterization results show that the reaction of grafting chitosan using chloroacetic acid produces N-carboxymethyl chitosan (N-CMC). The N-CMC/PVA membrane has a creatinine transport capacity of 19.61%. The N–CMC/PVA.g.Hep membrane has a creatinine transport capacity of 24.81%. Supporting PVA improves the hydrophilicity and mechanical strength of the membrane.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46561109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Effect of Cooking Treatment on Antioxidant Activity in Soybean Tempeh","authors":"Yuli Safitri, A. L. Aminin, N. Mulyani","doi":"10.14710/jksa.25.11.405-411","DOIUrl":"https://doi.org/10.14710/jksa.25.11.405-411","url":null,"abstract":"Indonesian people consume tempeh through various processing methods. Food processing by cooking has been reported to reduce the bioactive capacity contained in food ingredients. This study investigated the effects of food processing (frying, steaming, roasting, sautéing, and boiling) on antioxidants in soybean tempeh. The antioxidant activity of processed tempeh was measured using DPPH and reducing power methods. The results showed that the highest inhibition activity of the processed tempeh was achieved by roasting and boiling (40%). The roasting method yielded tempeh with the highest total phenolic and flavonoid content. Thus, the cooking method considerably influences the antioxidants contained in tempeh. The findings showed that tempeh processed through roasting and boiling has the highest antioxidant activity. The total phenolic and flavonoid profiles are not in line with antioxidant activity, which indicates that the contributors to antioxidant activity are not only phenolic compounds. The increase in antioxidant activity in soybean tempeh is suspected to be influenced by the non-phenolic bioactive peptide compounds found in tempeh.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45986241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced SOFC Cathode Performance Through Surface Modification of NdBa0.5Sr0.5Co2O5+δ Nanoparticles","authors":"A. Subardi","doi":"10.14710/jksa.25.9.322-328","DOIUrl":"https://doi.org/10.14710/jksa.25.9.322-328","url":null,"abstract":"The cathode materials fabrication with outstanding performance and stability at intermediate temperatures of 600–800℃ is required for the prospective mass production of solid oxide fuel cells (SOFCs). Infiltration is a potential method because it has proven successful in fabrication and cell performance enhancement. This study mainly focuses on the electrical conductivity and long-term reliability of cathode symmetric cells NdBa0.5Sr0.5Co2O5+δ (NBSC) fabricated by traditional solid-state reaction techniques. The electrical conductivity value of the cathode is in the range of 174–278 S.cm-1. Impedance analysis showed that the infiltration of 0.5M SDC on the NBSC cathode surface dramatically reduced the polarization resistance (Rp) between layers (cathode-electrolyte) from 3.32 Ω.cm2 to 1.82 Ω.cm2 at 600℃ or decreased by 45 % compared to NBSC cathode without 0.5M SDC infiltration. The enhanced stability of NBSC cathode specimens with 0.5M SDC infiltration (NBSC+0.5 M SDC) under SOFC operating conditions proves that samples with infiltration extend their lifetime. Compared to the NBSC cathode, the NBSC+0.5 M SDC cathode has better long-term stability with a lower RP value of 2.35 Ω.cm2. In the OPP range of 0.214-0.0027 atm at 800℃, the relatively tiny Rp value of the symmetrical cell is between 0.030 Ω.cm2 and 0.039 Ω.cm2, below the 0.15 Ω.cm2 suitable performance limit for solid oxide fuel cells.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42690925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wahyu Firmansya Nursalam, L. I. Momuat, H. Aritonang
{"title":"Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Microwave Assistance and Its Application as Photocatalyst in Degrading Methylene Blue","authors":"Wahyu Firmansya Nursalam, L. I. Momuat, H. Aritonang","doi":"10.14710/jksa.26.1.28-33","DOIUrl":"https://doi.org/10.14710/jksa.26.1.28-33","url":null,"abstract":"The research has been carried out on synthesizing zinc oxide (ZnO) nanoparticles with the help of microwaves. ZnO nanoparticles were synthesized in the microwave at 100°C with heating times of 50, 90, 130, 170, and 210 minutes. The synthesized ZnO nanoparticles were characterized using X-Ray Diffractometry (XRD) and Energy Dispersive Spectroscopy (EDS). The results were analyzed for their ability as a photocatalyst against methylene blue (MB) solution using UV-Vis spectrophotometry. The results revealed that the synthesized product was a combination of ZnO and Zn(OH) 2, as supported by XRD ICSD data no. 31052. However, the analysis results with EDS showed that the synthesized product only contained Zn and O elements, indicating that the product had ZnO. ZnO nanoparticles synthesized for 170 minutes of heating showed the highest ability to degrade MB of 85.8247% with a contact time of 150 minutes, while heating times of 50, 90, 130, and 210 minutes had percentage of MB degradation of 84.6065%, 81.0130%, 82.0866%, and 82.9275%, respectively.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42172832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Cardanol-Based Acetaldehyde Novolac Resin from Cashew Nut Shell Liquid (CNSL)","authors":"S. D. Marliyana, S. Wahyuningsih, Nisa Nur Hayati","doi":"10.14710/jksa.25.9.316-321","DOIUrl":"https://doi.org/10.14710/jksa.25.9.316-321","url":null,"abstract":"Polymers are currently in the limelight. Phenolic resin is one of the polymer products obtained from the polymerization process, either from natural or synthetic sources. One of the natural compounds that can be applied to polymers is cardanol. This study aimed to synthesize cardanol-based acetaldehyde novolac resin from Cashew Nut Shell Liquid (CNSL). Isolation of cardanol from CNSL was done by liquid-liquid extraction method with acetone and purified by gravity column chromatography in a mixture of n-hexane and ethyl acetate in a ratio of 9:1. HPLC analysis showed that cardanol compounds had aliphatic chains with different levels of saturation and the yield was 18.48%. The cardanol-acetaldehyde novolac resin was synthesized through a condensation polymerization reaction with a cardanol-acetaldehyde mole ratio (1:0.5), using HCl as a catalyst. FTIR and 1H-NMR analysis were employed to identify the novolac resin structure. The product was a brownish-orange solid with a yield of 12.80 mg (40%) and followed ortho-ortho substitution. Cardanol is one of the natural phenol sources that might be utilized to manufacture novolac resins.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66999696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of Cellulose Nanocrystal (CNCs) Based Biosorbent From Oil Palm Trunks Through Acid Hydrolysis With Sonication Assisted and Adsorption Kinetic Study","authors":"P. C. B. Mustika, M. Mustikaningrum","doi":"10.14710/jksa.25.9.307-315","DOIUrl":"https://doi.org/10.14710/jksa.25.9.307-315","url":null,"abstract":"Developing cellulose nanocrystal (CNCs) preparation techniques is a challenge confronted by many researchers. The advantages of property remain the reason for research to be developed. To deal with this issue, it is essential to conduct research related to process optimization, particularly in the hydrolysis process, which is the primary step in forming CNCs. In this study, the effect of sonication-assisted hydrolysis time was investigated. XRD characterization showed that the CNCs formed where the first group with specific peaks indicated. The crystallinity of CNCs decreased with increasing sonication duration, indicating that sonication-assisted hydrolysis was nonselective. The crystallinity of CNCs obtained for 15, 30, and 45 min was 61.6, 55.0, and 48.4 %, respectively. For sonication duration variations of 15, 30, and 45 min, the hydration diameter of CNCs was nearly identical at 42.35 ± 27.10, 42.99 ± 29.46, and 42.63 ± 29.49 nm, respectively. Similarly, the removal of methylene blue can be achieved using CNCs bio-adsorbent. The results of percent removal of methylene blue under sonication treatment of 15, 30, and 45 min of sonication were 73.34; 73.62; 72.86 %, respectively. The adsorption rate of CNCs follows the pseudo-second-order kinetic model, with the adsorption values under sonication treatment of 15, 30, and 45 min were 0.075 ± 0.008; 0.166 ± 0.013; 0.078 ± 0.005 g mg-1 min-1, respectively.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46374977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Heraldy, Novia Purnamawati, Y. Hidayat, Khoirina Dwi Noegrahaningtyas, I. F. Nurcahyo
{"title":"Preparation of Biosorbent from Kapok Fruit Peel (Ceiba pentandra) for Adsorption of Lead Waste","authors":"E. Heraldy, Novia Purnamawati, Y. Hidayat, Khoirina Dwi Noegrahaningtyas, I. F. Nurcahyo","doi":"10.14710/jksa.25.9.329-337","DOIUrl":"https://doi.org/10.14710/jksa.25.9.329-337","url":null,"abstract":"The preparation of biosorbent from kapok fruit peel (KBK) for lead (Pb(II)) removal was conducted mechanically by expanding the surface of the biosorbent and activating KBK with the addition of 1 M HCl for 20 minutes. The effect of activation on increasing the number of active groups and the number of pores in the biosorbent was proven by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The FTIR data showed a shift and an increase in wavenumber intensities of active adsorbent groups such as -OH and -C=O. The SEM data revealed that the morphology of the adsorbent increased in the number of pores that appeared rough and irregular. The Pb(II) adsorption treatment used a batch method at pH 2–5, contact time of 0–120 minutes, and adsorbate concentration of 10–50 ppm. The adsorption of Pb(II) ions reached optimum conditions at pH 4 and a contact time of 60 minutes, with an adsorption capacity of 6.9522 mg/g and an adsorption rate of 98.71%. Adsorption data showed that Pb(II) ions uptake to KBK biosorbent followed the Langmuir isotherm model equation and pseudo-second-order kinetic model. The adsorption capacity of activated KBK is greater than that of non-activated KBK.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47015581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis of Oil Palm Fronds Charcoal as Adsorbent to Reduce Levels of Fe (III) in Peat Water","authors":"R. Zikri, Evelin Natasyah, Muhdarina Muhdarina","doi":"10.14710/jksa.25.8.300-306","DOIUrl":"https://doi.org/10.14710/jksa.25.8.300-306","url":null,"abstract":"The high content of carbon compounds in palm fronds (OPF) makes them potentially useful as an adsorbent. The carbonization method was used for the adsorbent synthesis process. This process began with collecting palm frond waste and then drying and sifting the adsorbent particle. This process resulted in the escape particles with a size of 80 mesh and suspended particles with 120 mesh. Then this process continued by carbonizing the palm fronds with temperature variations starting from (400, 500, and 600°C) for 60 minutes to obtain Charcoal Oil Palm Fronts (COPF). The obtained COPF was determined for moisture and ash content and characterized using FTIR, XRD, and SEM to determine the surface, functional groups, degree of amorphism, crystallinity, and surface morphology. The adsorption efficiency of COPF was applied to the adsorption of Fe (III) in peat water under varying contact time, adsorbent mass, and peat water volume conditions. The water and ash content of COPF qualify the technical quality requirements for activated charcoal according to SNI 06-3730-1995. FTIR analysis detected the presence of vibrations of the C-O, O-H, C=O, C-C, and C-H functional groups on the COPF surface. The XRD pattern showed the existence of a semi-crystalline (002) and (100) plane structure, which is shown at scattering angles of 2θ = 22o and 42o. The surface morphology of COPF showed that as the carbonization temperature increased, the number of pores formed increased, and the pore size decreased. The best adsorption test results were obtained with a contact time of 30 minutes, an adsorbent mass of 1.00 g, and a peat water volume of 100 mL. The highest Fe adsorption efficiency was achieved by COPF 500, where the adsorbed mass was 0.054 mg. Increasing the carbonization temperature causes the water content to decrease and the ash content to increase. High water content and ash content cause a decrease in adsorption efficiency because they can cover the pores of the adsorbent.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44503670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nunik Gustini, D. A. Wulandari, F. Rachman, E. Septiana, S. Rahmawati, G. Syahputra, Martha Sari, M. Putra
{"title":"Antioxidant and Anticancer Activities of Sand Sea Cucumber (Holothuria scabra) Extracts using Wet Rendering Extraction Method","authors":"Nunik Gustini, D. A. Wulandari, F. Rachman, E. Septiana, S. Rahmawati, G. Syahputra, Martha Sari, M. Putra","doi":"10.14710/jksa.26.1.1-9","DOIUrl":"https://doi.org/10.14710/jksa.26.1.1-9","url":null,"abstract":"Antioxidant and anticancer activities of sand sea cucumber Holothuria scabra (dried and fresh) extracts were studied. The highest extraction yield of sea cucumber H. scabra (3.9%) was obtained using dried H. scabra at 60oC. The highest antioxidant activity was found in fresh H. scabra extract at 60°C with an IC50 value of 629.89 ± 0.15 µg/mL using the ABTS method, and the highest antioxidant activity by DPPH method was found in dried H. scabra extract at 70°C with an IC50 value of 32017.18 ± 0.82 µg/mL. The best antioxidant activity based on FRAP and TBARS methods was found in fresh H. scabra extracts at 80°C, respectively. The highest total phenol and flavonoid contained in dried H. scabra extract were 317.54 ± 8.91 mg GAE/100 g sample and 247.56 ± 11.70 mg QE/100 g sample. H. scabra extracts inhibited more than 50% of the growth of the MDA-MB-231 cell line at concentrations of 25 and 50 μg/mL except for dried H. scabra extracts at 80°C. Similarly, the extracts showed the highest cytotoxic effect up to 100% at the highest concentration (100 μg/mL) except for dried H. scabra extracts at 70°C and 80°C.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49422915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}