Karbala International Journal of Modern Science最新文献

筛选
英文 中文
A study on image processing techniques and deep learning techniques for insect identification 昆虫识别的图像处理技术和深度学习技术研究
Karbala International Journal of Modern Science Pub Date : 2023-05-22 DOI: 10.33640/2405-609x.3289
V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar
{"title":"A study on image processing techniques and deep learning techniques for insect identification","authors":"V. Gupta, M. Padmavati, R. Saxena, P. Patnaik, R. Tamrakar","doi":"10.33640/2405-609x.3289","DOIUrl":"https://doi.org/10.33640/2405-609x.3289","url":null,"abstract":"Abstract Automatic identification of insects and diseases has attracted researchers for the last few years. Researchers have suggested several algorithms to get around the problems of manually identifying insects and pests. Image processing techniques and deep convolution neural networks can overcome the challenges of manual insect identification and classification. This work focused on optimizing and assessing deep convolutional neural networks for insect identification. AlexNet, MobileNetv2, ResNet-50, ResNet-101, GoogleNet, InceptionV3, SqueezeNet, ShuffleNet, DenseNet201, VGG-16 and VGG-19 are the architectures evaluated on three different datasets. In our experiments, DenseNet 201 performed well with the highest test accuracy. Regarding training time, AlexNet performed well, but ShuffleNet, SqueezeNet, and MobileNet are better alternatives for small architecture.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41473768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secure QR-Code Generation in Healthcare 医疗保健中的安全qr码生成
Karbala International Journal of Modern Science Pub Date : 2023-05-09 DOI: 10.33640/2405-609x.3294
Safa S. Abdul-Jabbar, Alaa K. Farhan
{"title":"Secure QR-Code Generation in Healthcare","authors":"Safa S. Abdul-Jabbar, Alaa K. Farhan","doi":"10.33640/2405-609x.3294","DOIUrl":"https://doi.org/10.33640/2405-609x.3294","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44984566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved Face Morphing Attack Detection Method Using PCA and Convolutional Neural Network 基于PCA和卷积神经网络的人脸变形攻击检测方法
Karbala International Journal of Modern Science Pub Date : 2023-05-09 DOI: 10.33640/2405-609x.3298
Imanuddin Razaq, B. K. Shukur
{"title":"Improved Face Morphing Attack Detection Method Using PCA and Convolutional Neural Network","authors":"Imanuddin Razaq, B. K. Shukur","doi":"10.33640/2405-609x.3298","DOIUrl":"https://doi.org/10.33640/2405-609x.3298","url":null,"abstract":"Abstract Face recognition is the most extensively utilized security and public safety verification method. In many nations, the Automatic Border Control system uses face recognition to confirm the identification of travelers The ABC system is vulnerable to face morphing attacks; the face recognition systems give acceptance for the traveller, even though the passport photo does not represent the actual image of the person but is a result of the merger of two images. Therefore, it is vital to determine whether the passport image is altering (morph) or actual. This research proposes an improved method to extract features from facial images. The proposed method consists of four phases: In the first stage, morph images were generated using a set of databases of images of real people, used every two images that were similar in general shape or landmarks in producing the morphed image using three types of techniques used in this field (Automatic selection landmark, StyleGAN, and Manual selection landmark). StyleGAN has been relied upon to achieve the best results in producing artefact-free images. In the second phase, a Faster Region Convolution neural network is utilizing for determining and cutting important landmarks area (eyes, nose, mouth, and skin) in the face, where we leave the hair, ears, and image background for every image in the database. In the third phase, the features are extracted using three techniques Principal component analysis, eigenvalue, and eigenvector; a matrix of two-dimensional features is generated with one layer for each technique. Then merge the extracted features (with out s) from each image into one image with three layers. The first layer represents the principal component analysis features, the second the eigenvalue features, and the third the eigenvector features. Finally, the features are introduced into the convolutional neural networks to obtain optimal features. The fourth phase represents the classification process using the Deep Neural Network (DNN) classifier and Support Vector Machine (SVM) second classifier. The DNN classifier achieved an average accuracy of 99.02% compared with SVM, with an accuracy of 98.64%. The power of the proposed work is evident through the FRA and RFF evaluation. Which achieved values as low as possible for DNN FAR 0.018, indicating the error rate in calculating morphed images is actual, and FRR 0.003, meaning the error rate in calculating the actual images is morphed, FAR 0.023, FRR 0.06 for SVM whenever these ratios are less than one, the higher system's accuracy in detection. The AMSL dataset (Accuracy 95.8%, FAR 0.039, FRR 0%) (Accuracy 95.2%, FAR 0.047, FRR 0.98) for DNN and SVM, respectively. It turned out that the training of the proposed network optimized for the features extracted for the landmarks area significantly affects finding the difference and discovering the modified images, even in the case of minor modifications as in the AMSL dataset.","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biosynthesis of Copper Nanoparticles Using Hylocereus costaricensis Peel Extract and their Photocatalytic Properties 红杉皮提取物生物合成纳米铜及其光催化性能研究
Karbala International Journal of Modern Science Pub Date : 2023-05-04 DOI: 10.33640/2405-609x.3300
S. Putri, N. Herawati, Ahmad Fudhail, D. Pratiwi, S. Side, Abd-Shukor A. Rahman, S. Desa, Nur Ahmad, S. Junaedi, A. Surleva
{"title":"Biosynthesis of Copper Nanoparticles Using Hylocereus costaricensis Peel Extract and their Photocatalytic Properties","authors":"S. Putri, N. Herawati, Ahmad Fudhail, D. Pratiwi, S. Side, Abd-Shukor A. Rahman, S. Desa, Nur Ahmad, S. Junaedi, A. Surleva","doi":"10.33640/2405-609x.3300","DOIUrl":"https://doi.org/10.33640/2405-609x.3300","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-Colloidal Silver Nanoparticles Prepared via Green Synthesis Using Sandoricum koetjape Peel Extract for Selective Colorimetry-Based Mercury Ions Detection 三棱皮提取物绿色合成生物胶体银纳米粒子用于选择性比色法检测汞离子
Karbala International Journal of Modern Science Pub Date : 2023-05-04 DOI: 10.33640/2405-609x.3299
A. S. Rini, Anggrid Fitrisia, Y. Rati, L. Umar, Y. Soerbakti
{"title":"Bio-Colloidal Silver Nanoparticles Prepared via Green Synthesis Using Sandoricum koetjape Peel Extract for Selective Colorimetry-Based Mercury Ions Detection","authors":"A. S. Rini, Anggrid Fitrisia, Y. Rati, L. Umar, Y. Soerbakti","doi":"10.33640/2405-609x.3299","DOIUrl":"https://doi.org/10.33640/2405-609x.3299","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46513387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing COVID-19 Vaccine Adverse Reactions Using Machine Learning Techniques 利用机器学习技术分析COVID-19疫苗不良反应
Karbala International Journal of Modern Science Pub Date : 2023-05-02 DOI: 10.33640/2405-609x.3271
Mohammed Basil Albayati, A. Altamimi
{"title":"Analyzing COVID-19 Vaccine Adverse Reactions Using Machine Learning Techniques","authors":"Mohammed Basil Albayati, A. Altamimi","doi":"10.33640/2405-609x.3271","DOIUrl":"https://doi.org/10.33640/2405-609x.3271","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45200073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulatory and Ameliorative Effect of Citrus limon Extract on DMBA‐induced Breast Cancer in Mouse 柑橘柠檬提取物对DMBA诱导的小鼠乳腺癌的免疫调节和改善作用
Karbala International Journal of Modern Science Pub Date : 2023-04-28 DOI: 10.33640/2405-609x.3273
W. E. Putra, Astrid Karindra Agusinta, Muhammad Sultonun Arifin Ali Ashar, Vetti Adriani Manullang, Muhaimin Rifa’i
{"title":"Immunomodulatory and Ameliorative Effect of Citrus limon Extract on DMBA‐induced Breast Cancer in Mouse","authors":"W. E. Putra, Astrid Karindra Agusinta, Muhammad Sultonun Arifin Ali Ashar, Vetti Adriani Manullang, Muhaimin Rifa’i","doi":"10.33640/2405-609x.3273","DOIUrl":"https://doi.org/10.33640/2405-609x.3273","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47598437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting social trust via weighted voting strategy for recommendation systems improvement 通过加权投票策略利用社会信任改进推荐系统
Karbala International Journal of Modern Science Pub Date : 2023-04-20 DOI: 10.33640/2405-609x.3295
H. J. Oudah, M. H. Hussein
{"title":"Exploiting social trust via weighted voting strategy for recommendation systems improvement","authors":"H. J. Oudah, M. H. Hussein","doi":"10.33640/2405-609x.3295","DOIUrl":"https://doi.org/10.33640/2405-609x.3295","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43134560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning based Software Fault Prediction models 基于机器学习的软件故障预测模型
Karbala International Journal of Modern Science Pub Date : 2023-04-20 DOI: 10.33640/2405-609x.3297
Gurmeet Kaur, Jyotika Pruthi, Parul Gandhi
{"title":"Machine learning based Software Fault Prediction models","authors":"Gurmeet Kaur, Jyotika Pruthi, Parul Gandhi","doi":"10.33640/2405-609x.3297","DOIUrl":"https://doi.org/10.33640/2405-609x.3297","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42627652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New Alkyd Resins from Underutilized Indigenous Seed Oils: Synthesis and Characterization 未充分利用的本地种子油制备新型醇酸树脂:合成与表征
Karbala International Journal of Modern Science Pub Date : 2023-04-17 DOI: 10.33640/2405-609x.3293
A. O. Mustapha, Hakeem B. Ayoku, Halimah A. Amao
{"title":"New Alkyd Resins from Underutilized Indigenous Seed Oils: Synthesis and Characterization","authors":"A. O. Mustapha, Hakeem B. Ayoku, Halimah A. Amao","doi":"10.33640/2405-609x.3293","DOIUrl":"https://doi.org/10.33640/2405-609x.3293","url":null,"abstract":"","PeriodicalId":17782,"journal":{"name":"Karbala International Journal of Modern Science","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41597973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信